Bruce McNaughton

Faculty of Arts & Science


Research expertise

The main focus of Dr. McNaughton's research is the physiological and computational basis of cognition, with particular focus on memory and memory disorders, and the dynamic interactions among neuronal populations and synaptic plasticity mechanisms that underlie these phenomena. He has made significant contributions to the understanding of central synaptic plasticity mechanisms, spatial information processing in the hippocampal formation and cortex, cortico-hippocampal interactions and memory consolidation, and the aging of the nervous system. His current activities focus on understanding the neural mechanisms underlying spatial orientation ('head-direction', 'place', and 'grid' cells in the hippocampal formation and associated networks), the interaction between hippocampal outflow and neocortical signal processing, the reactivation of memory traces during rest periods following learning and the role of this process in memory consolidation, and the self organization of synaptic networks during early post-natal development of the temporal lobe memory system. He is also engaged in preclinical studies involving altered signal processing in animal models of sporadic Alzheimer's disease and early detection of seizures in medial temporal lobe epilepsy. His work emphasizes the development and application of advanced technologies in neuroscience including high density electrophysiological recording and optical imaging of neural activity at cellular and network levels.