
RECURSIVELY-CONSTRUCTED UNIT HADAMARD MATRICES: THEIR
EXCESS AND A RESULTING FAMILY OF BIBDS

KAI FENDER

Honours Thesis

Department of Mathematics and Computer Science
University of Lethbridge

LETHBRIDGE, ALBERTA, CANADA

c© Kai Fender, 2016



RECURSIVELY-CONSTRUCTED UNIT HADAMARD MATRICES: THEIR EXCESS
AND A RESULTING FAMILY OF BIBDS

KAI FENDER

Date of Defense: April 13, 2016, 12:00 PM

Dr. Hadi Kharaghani
Supervisor Professor Ph.D.

Dr. Amir Akbary-Majdabadno
Committee Member Professor Ph.D.

ii



Abstract

A unit Hadamard matrix is a square matrix H with unimodular entries and mutually or-

thogonal row vectors. If the entries of H are all roots of unity, H is a Butson Hadamard

matrix. If the entries of H are all 1 or−1, H is a Hadamard matrix. In the second half of the

twentieth century interest arose in finding the maximum modulus of the sum of the entries,

or excess, of a unit Hadamard matrix. In this thesis, we will give a recursive construction

for infinite classes of Hadamard, Butson Hadamard and unit Hadamard matrices. We will

proceed to use these classes to obtain several lower bounds for the maximal excess problem.

Finally, we will show that some of our recursively-constructed Hadamard matrices can be

used to construct an infinite class of balanced incomplete block designs, another important

combinatorial object.
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Chapter 1

Introduction

Hadamard matrices were first studied almost one hundred fifty years ago by James Sylvester.

In 1867, Sylvester gave a construction for an interesting infinite class of Hadamard matri-

ces known as the Sylvester matrices [21]. After Sylvester, the next major contribution to

the study of Hadamard matrices came from the analyst Jacques Hadamard, after whom

Hadamard matrices are named. Hadamard was led to Hadamard matrices by attempting

to find the maximum determinant of matrices of complex numbers with modulus less than

a given positive constant A. In an 1893 paper [10], Hadamard placed an upper bound on

the determinant and as an example showed that if A = 1, the bound is met by n× n Van-

dermonde matrices formed using the n roots of the polynomial xn− 1. Furthermore, he

showed that when A = 1, this bound is met by real matrices if and only if the matrix is

what we now call a Hadamard matrix. To finish his paper, Hadamard gave the first exam-

ples of Hadamard matrices of orders 12 and 20, and suggested that the problem of finding

(±1)-matrices with maximal determinants is an interesting one. This problem gave rise to

the famous Hadamard conjecture, which asserts that there is a Hadmard matrix of order

n whenever n is a multiple of 4. To this day the Hadamard conjecture has parried the at-

tacks of many brilliant mathematicians, and remains the most important open question in

the study of Hadamard matrices.

Not only did the advent of Hadamard matrices create a field of study fascinating in its

own right, but it also introduced a branch of combinatorics that has found applications in

areas such as telecommunications, quantum computing, theoretical physics, and experimen-
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1.1. SUMMARY OF MAIN RESULTS

tal design. As such, the study of Hadamard matrices has garnered not only the interest of

mathematicians, but of engineers and physicists as well. For surveys of some applications

of Hadamard matrices, we refer the reader to [8, 20].

Since their introduction by Sylvester so many years ago, Hadamard matrices have been

generalized in many different ways by many different authors. In addition to Hadamard

matrices, this thesis is concerned with two such generalizations: Butson Hadamard ma-

trices [3] and unit Hadamard matrices [22]. These generalizations share most of the key

properties of Hadamard matrices, but with loosened requirements on their entries.

This thesis is divided into two main parts: background (Chapter 2) and original results

(Chapter 3). More specifically, in Chapter 2 we survey important foundational concepts

pertaining to Hadamard matrices, Butson Hadamard matrices, unit Hadamard matrices,

and the properties of these matrices such as their structure and excess. Chapter 3 presents

the results of the research I began alongside Hadi Kharaghani and Dakota Duffy in the

summer of 2015 and continued into the fall and winter myself. This research is based on the

combinatorial applications of pairs of matrices satisfying two key properties. Such pairs of

matrices will be dubbed q-suitable. Herein, we will see that q-suitable pairs of matrices can

be exploited to obtain Hadamard matrices, Butson Hadamard matrices, and unit Hadamard

matrices. We will then introduce a recursive construction involving Jacobsthal matrices and

pairs of q-suitable matrices. The reader may find this recursive construction reminiscent of

the recursive techniques used by other authors to study combinatorial designs [6, 11]. Here,

however, we apply the techniques in a novel way to obtain constructions for an infinite class

of BIBDs, and for infinite classes of Hadamard matrices, Butson Hadamard matrices, and

unit Hadamard matrices with certain interesting properties.

1.1 Summary of Main Results

In this section we will present an overview of Chapter 3, which contains the original

results in this thesis. Before giving the overview, it should be noted that with the exception
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1.1. SUMMARY OF MAIN RESULTS

of Lemma 3.2.8, the results in Chapter 3 are original. We would also like to note that the

results of Sections 3.1 and 3.3 were obtained independently by the author, while the results

of Section 3.2 were obtained in collaboration with Hadi Kharaghani and Dakota Duffy.

Let q be an odd prime power. In Section 3.1 we give the definition of a q-suitable pair

of matrices. Next, assuming the existence of a q-suitable pair (A,B) of n×n matrices, we

present two recursive constructions (one for q ≡ 3 (mod 4) and one for q ≡ 1 (mod 4))

for unit Hadamard matrices of order nqm(q + 1) for each integer m ≥ 0. Of particular

interest, we show that if A and B are (±1,±i)-matrices, then both of our constructions

yield BH(nqm(q+ 1),4)’s, while if A and B are (±1)-matrices, then our construction for

q ≡ 3 (mod 4) yields Hadamard matrices. To conclude the section, assuming A and B are

(±1)-matrices, we give a recursive construction for a unit Hadamard matrix of order nqm

for each integer m≥ 0, regardless of the residue of q modulo 4, and we show that these unit

Hadamard matrices are unreal BH(nqm,6)’s or unreal BH(nqm,12)’s when q = 3.

Section 3.2 is devoted to studying the combinatorial fruits of a basic pair of q-suitable

matrices. Using this pair, we will present several interesting results pertaining to the exis-

tence, structure, and excess of Hadamard, Butson Hadamard, and unit Hadamard matrices.

More specifically, in Section 3.2.1, we give a construction for a Hadamard matrix of order

qm(q+1) whenever m≥ 0 is an integer and q≡ 3 (mod 4) is a prime power. Next, we will

use these matrices to derive two lower bounds for the maximal excess problem:

σR(q2m(q+1))≥ q3m(3q−1)

and

σR(q2m+1(q+1))≥ q3m+2(q+1)+2qm+2(qm−1),

where σR(n) denotes the maximum excess of all Hadamard matrices of order n. Moreover,

we will show that when m is even and q = 3, the constructed matrices are of maximum
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1.2. NOTATION

excess and regular, giving

σR(4 ·32m) = (4 ·32m)3/2.

In Section 3.2.2, we construct an unreal, multicirculant, maximal-excess unit Hadamard

matrix of order qm for each integer m ≥ 0 and prime power q ≡ 3 (mod 4), and we show

that if q = 3, then this matrix is a BH(3m,6) or a BH(3m,12).

In Section 3.2.3, we give an application of the basic pair of q-suitable matrices given at

the beginning of Section 3.2. Namely, we construct a (q2m+2, qm+1(qm+1−1)
2 , qm(qm+1−2)(q+1)

4 )-

design for each integer m≥ 0 and prime power q≡ 3 (mod 4).

In Section 3.3, we assume q ≡ 3 (mod 4) is a prime power, m ≥ 0 is an integer, and

that there exists a symmetric, standardized Hadamard matrix of order q+ 5. Under these

assumptions, we present constructions for a Hadamard matrix of order qm(q+ 1)(q+ 4),

an unreal unit Hadamard matrix of order qm(q+4), an unreal BH(7 ·3m,6), and an unreal

BH(7 · 3m,12). Finally, we use the constructed Hadamard matrices to derive two lower

bounds for the maximal excess problem:

σR(q2m(q+1)(q+4))≥ q3m(q+1)(q+2)(q+4)

and

σR(q2m+1(q+1)(q+4))≥ q3m+2(q+4)(3q+3).

1.2 Notation

Many undergraduate, master’s, and Ph.D. theses make use of a very good idea: to intro-

duce common mathematical notation in a brief section in the introduction. We will borrow

this idea, as enough recurring pieces of mathematical notation will be used that it will be

beneficial to introduce them all in one place for the reader’s reference, as opposed to scat-

tering their introductions throughout the thesis. As is standard, In will be used to denote

the n× n identity matrix. Likewise, the use of Jn will be restricted to denoting the n× n
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1.2. NOTATION

all-ones matrix. We will use Q and Qq solely to denote Jacobsthal matrices. The letters H,

K and L will be used only to denote Hadamard matrices or their generalizations, such as

unit Hadamard matrices and Butson Hadamard matrices. The transpose of a matrix A will

be denoted AT , and its conjugate-transpose, also known as its Hermitian transpose, will be

denoted A∗. In general, capital letters will be used as variables exclusively to denote matri-

ces or sets. When writing out matrices explicitly, we will use ”−” as a shorthand for ”−1”.

For example, we write  1 −

1 1


in lieu of  1 −1

1 1

 .

Unless otherwise stated, one should assume that an n×m matrix’s rows and columns are

indexed from 1 to n and 1 to m respectively. Finally, jn will be used to denote the 1× n

all-ones row vector, p will always represent a prime number, q will be used exclusively to

refer to prime powers, and GF(q) will denote the finite field of order q.
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Chapter 2

Background

We discussed the history of Hadamard matrices in Chapter 1. It is time to give their formal

definition.

Definition 2.0.1. A Hadamard matrix of order n is an n× n (±1)-matrix H such that

HHT = nIn.

Given an n×n Hadamard matrix H, the condition HHT = nIn is equivalent to requiring

that the row vectors of H are pairwise orthogonal. This can be verified by way of the

following examples.

Example 2.0.1. The following are Hadamard matrices of orders 1, 2, and 4:

(1) ,

 1 −

1 1

 ,



1 1 1 1

1 1 − −

1 − − 1

1 − 1 −


,



− 1 1 1

1 − 1 1

1 1 − 1

1 1 1 −


.

2.1 Equivalence of Hadamard Matrices

Looking at the examples of Hadamard matrices in the previous section, one notices that

not only are the row vectors of these matrices pairwise orthogonal, but their column vectors

are as well. In fact, this is true of all Hadamard matrices, as we will see from the proof of

next proposition.

Proposition 2.1.1. If H is a Hadamard matrix of order n, then so is HT .
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2.1. EQUIVALENCE OF HADAMARD MATRICES

Proof. Since HHT = nIn, we see that H−1 = 1
nHT . It follows that

HT (HT )T = nH−1H = nIn.

The transpose is not the only operation we can perform on a Hadamard matrix to obtain

a second Hadamard matrix. Since the row vectors of any Hadamard matrix are pairwise

orthogonal, it’s not hard to see that if we negate a row or column of a Hadamard matrix,

then the resulting matrix also has pairwise orthogonal rows and is therefore a Hadamard

matrix. Likewise, if we permute the rows or columns of a Hadamard matrix then the re-

sulting matrix is easily seen to be a Hadamard matrix. These observations are summarized

somewhat more formally as follows.

Proposition 2.1.2. Let H be a Hadamard matrix of order n and let P1 and P2 be two signed

n×n permutation matrices. Then P1HP2 is a Hadamard matrix of order n.

Proof. Since P1 and P2 are signed permutation matrices we have P1PT
1 = P2PT

2 = In. Using

this observation we note

(P1HP2)(P1HP2)
T = P1HP2PT

2 HT PT
1 = P1HHT PT

1 = nP1PT
1 = nIn.

Proposition 2.1.2 has given us a method of transforming one Hadamard matrix of order

n into another via row and column permutations and negations. This motivates a definition.

Definition 2.1.3. We call two n× n Hadamard matrices H and K equivalent if there exist

two signed n× n permutation matrices P1 and P2 such that H = P1KP2. The equivalence

class of a Hadamard matrix is the set of all Hadamard matrices with which it is equivalent.
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2.1. EQUIVALENCE OF HADAMARD MATRICES

[ht]
Table 2.1: Number of equivalence classes of Hadamard matrices of order n≤ 32

n # Matrices

1 1
2 1
4 1
8 1
12 1
16 5
20 3
24 60
28 487
32 13710027

Put more simply, two Hadamard matrices are equivalent if one can be obtained from

the other by a series of row and column permutations and negations. The notion of equiva-

lence of Hadamard matrices begs a simple question: how many distinct equivalence classes

of Hadamard matrices are there for a given order? This problem has proved an arduous

one, and for all but the smallest orders is virtually intractable without the aid of computer

searches. The progress made so far is summarized in Table 2.1. The most recent order

to be completely classified is 32. This classification was done by Kharaghani and Tayfey-

Rezaie [16], and involved a nine-month-long search done with a computer grid.

While perusing Table 2.1, the reader may have noticed that aside from orders 1 and 2,

all orders of Hadamard matrices listed were a multiple of 4. It turns out that with a little

work we can show this is a necessary condition for the existence of a Hadamard matrix.

The proof of this fact is left until the next section, and will make use of the next definition

and the subsequent proposition.

Definition 2.1.4. We say that a Hadamard matrix is standardized if its first row and its first

column are composed entirely of ones.

Given a Hadamard matrix, we can first negate all rows whose leftmost entry is −1,

then negate all columns whose uppermost entry is −1. Doing so, we obtain a standardized
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2.2. EXISTENCE OF HADAMARD MATRICES

Hadamard matrix. This establishes the following proposition.

Proposition 2.1.1. Each Hadamard matrix is equivalent to a standardized Hadamard ma-

trix.

2.2 Existence of Hadamard Matrices

After defining Hadamard matrices, perhaps the most natural question to ask is for which

orders a Hadamard matrix can exist. In the previous section we alluded briefly to a nec-

essary condition for the existence of Hadamard matrices. We are now ready to prove that

condition.

Proposition 2.2.1. If there is a Hadamard matrix of order n, then n is either 1, 2, or a

positive multiple of 4.

Proof. We established in Example 2.0.1 that there are Hadamard matrices of orders 1 and

2, so consider a Hadamard matrix H of order n > 2. Proposition 2.1.1 tells us that we may

assume without loss of generality that H is standardized. From here, permute the columns

of H until the first a columns have 1, 1, 1 as their first three entries, the next b columns

have 1, 1, -1 as their first three entries, the next c columns have 1, -1, 1 as their first three

entries, and the final d columns have 1, -1, -1 as their first three entries. This is summarized

visually in the following image of the first three rows of H.

1 1 · · · 1 1 1 1 · · · 1 1 1 1 · · · 1 1 1 1 · · · 1 1
1 1 · · · 1 1 1 1 · · · 1 1 − − ·· · − − − − ·· · − −
1 1 · · · 1 1 − − ·· · − − 1 1 · · · 1 1 − − ·· · − −

...
...

...
...





a columns b columns c columns d columns

From here, the fact that the order of H is n together with the orthogonality of the rows of H

9



2.3. SYLVESTER’S AND HADAMARD’S CONSTRUCTIONS OF HADAMARD
MATRICES

yields a system of equations:



a+b+ c+d = n (The order of H is n)

a+b− c−d = 0 (Rows one and two are orthogona)

a−b+ c−d = 0 (Rows one and three are orthogonal)

a−b− c+d = 0 (Rows two and three are orthogonal)

A basic computation shows that this system of linear equations has the unique solution

a = b = c = d = n/4. Of course a,b,c, and d must be integers, so n is a multiple of 4.

Having found that n being 1, 2, or a multiple of 4 is a necessary condition for the

existence of a Hadamard matrix of order n, one may wonder whether this condition is also

sufficient. The answer to this question is the most important open problem in the study of

Hadamard matrices. It is believed that the condition is indeed sufficient, which brings us to

the following well known conjecture.

Conjecture 2.2.2 (The Hadamard Conjecture). There is a Hadamard matrix of order n

whenever n is 1, 2, or a multiple of 4.

Recently, a significant milestone was reached in the verification of the Hadamard con-

jecture. Until 2004, order 428 was the smallest order for which Hadamard matrices had

eluded discovery. In 2004, Kharaghani and Tayfeh-Rezaie became the first to discover a

Hadamard matrix of order 428 [15], making 668 the smallest order for which no Hadamard

matrix is known.

In the next sections we will present some important historical milestones that have

helped verify the Hadamard conjecture, including those made by Sylvester [21], Hadamard

[10], and Paley [19].
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2.3. SYLVESTER’S AND HADAMARD’S CONSTRUCTIONS OF HADAMARD
MATRICES

2.3 Sylvester’s and Hadamard’s Constructions of Hadamard Matrices

Having defined Hadamard matrices and introduced some of their most fundamental con-

cepts, we now turn our attention to the construction of Hadamard matrices. In this section

we will present two important constructions discovered while the study of Hadamard ma-

trices was in its infancy. Namely, we will introduce results obtained by Sylvester in 1867

[21] and by Hadamard in 1893 [10]. Without further ado, let us delve into the discoveries

made by Sylvester, who was the first mathematician to consider Hadamard matrices.

Theorem 2.3.1 (Sylvester, [21]). Let H be a Hadamard matrix of order n. Then the block

matrix  H H

H −H


is a Hadamard matrix of order 2n.

Proof. Elementary matrix multiplication gives the result:

 H H

H −H


 H H

H −H


T

=

 H H

H −H


 HT HT

HT −HT


=

 2nIn 0

0 2nIn


= 2nI2n.

Since (1) is a Hadamard matrix of order 1, we can apply Theorem 2.3.1 m times to (1)

to obtain a Hadamard matrix of order 2m. This proves the following:

Corollary 2.3.1 (Sylvester, [21]). If m is a nonnegative integer, then there is a Hadamard

matrix of order 2m.
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2.3. SYLVESTER’S AND HADAMARD’S CONSTRUCTIONS OF HADAMARD
MATRICES

The matrices of order 2m obtained from Sylvester’s construction are known as the

Sylvester Hadamard matrices. Although simple to describe, this infinite class of matrices

continues to prove itself worthy of study to this day. For example, recent results pertaining

to Sylvester Hadamard matrices can be found in [18, 1].

Despite Hadamard matrices being his namesake, Jacques Hadamard did not study Hadamard

matrices until about two-and-a-half decades after Sylvester. In fact, Hadamard was led to

study Hadamard matrices not for their combinatorial properties, but in an attempt to de-

termine the largest possible absolute value of the determinant of a square matrix whose

entries are chosen from some set of complex numbers. In studying this problem, Hadamard

showed that the absolute value of the determinant of an n× n matrix M whose entries are

from the set {z ∈ C : |z| ≤ 1} never exceeds nn/2, and that when M is a (±1)-matrix, this

bound is met if and only if M is a Hadamard matrix [10]. Hadamard’s contributions to the

study of Hadamard matrices don’t end with determinants. He also generalized Sylvester’s

construction for Hadamard matrices, as we will show shortly. First, however, we require a

prerequisite definition: the Kronecker product.

Definition 2.3.2. Let A = (ai j) be an n×m matrix and let B = (bi j) be a r× s matrix. The

Kronecker product A⊗B of A and B is the nr×ms block matrix

A⊗B =


a11B . . . a1mB

... . . . ...

an1B . . . anmB

 .

12



2.3. SYLVESTER’S AND HADAMARD’S CONSTRUCTIONS OF HADAMARD
MATRICES

Example 2.3.3. Here is the Kronecker product of two matrices:

 1 1

1 −

⊗
 1 1

1 −

=



1 1 1 1

1 − 1 −

1 1 − −

1 − − 1


.

It is interesting to note that the matrices in this example are all Hadamard matrices. Shortly,

we will see that in fact the Kronecker product of two Hadamard matrices is always another

Hadamard matrix.

Several fundamental properties of the Kronecker product are readily verified. For in-

stance, the Kronecker product is bilinear, associative, and it satisfies the following three

equations, assuming A,B,C,D are of the appropriate dimensions to discuss the products AC

and BD.

(1) (A⊗B)(C⊗D) = (AC)⊗ (BD)

(2) (A⊗B)T = AT ⊗BT

(3) (A⊗B)−1 = A−1⊗B−1.

The proof of these properties is left as an exercise for the reader.

Using the Kronecker product, Hadamard generalized Sylvester’s construction.

Theorem 2.3.4 (Hadamard, [10]). Let H be a Hadamard matrix of order n and K a Hadamard

matrix of order m. Then H⊗K is a Hadamard matrix of order nm.

Proof. Using the properties of the Kronecker product, we note:

(H⊗K)(H⊗K)T = (HHT )⊗ (KKT ) = (nIn)⊗ (mIm) = nmInm.

13



2.4. JACOBSTHAL MATRICES AND PALEY’S CONSTRUCTION FOR HADAMARD
MATRICES

It should be noted that Hadamard did not state Theorem 2.3.4 in terms of Kronecker

products. However, as the study of Hadamard matrices evolved, Kronecker products have

proved themselves an invaluable tool for construction. As such, we elected to present

Hadamard’s theorem using Kronecker products in lieu of Hadamard’s original statement.

2.4 Jacobsthal Matrices and Paley’s Construction for Hadamard Ma-

trices

In the previous section, we saw that when Sylvester introduced the notion of Hadamard

matrices, he presented a construction for an infinite class of Hadamard matrices of order

2m, where m ≥ 0. The first possible orders of Hadamard matrices not covered by this

class are 12 and 20. In 1893, Hadamard concluded his paper on the maximal determinant

problem by describing Hadamard matrices of orders 12 and 20 [10]. However, his matrices

left something to be desired, as he did not employ any versatile construction to obtain the

matrices of orders 12 and 20, and instead presented the matrices as if out of thin air. It

was not until 1933 that Paley discovered a truly versatile construction that could be used to

obtain Hadamard matrices of orders 12 and 20, amongst infinitely many other orders [19].

In doing so, Paley cleverly used quadratic characters and finite fields to build Hadamard

matrices. Paley’s use of finite fields made him the first to discover a deep interplay between

algebra and Hadamard matrices, laying the foundations for much of the research conducted

in the 83 years since the publication of his important paper. As such, before presenting

Paley’s construction, we must first familiarize ourselves with the tools from field theory

required by the construction.

Definition 2.4.1. Let q be a prime power. We say that a ∈GF(q) is a quadratic residue in

GF(q) if it is nonzero and there is some b ∈GF(q) such that a = b2. If a is nonzero but no

such b exists, then a is called a quadratic non-residue in GF(q). If a = 0, then a is neither

a quadratic residue nor a quadratic non-residue.

Remark 2.4.2. It should be noted that the choice to define 0 as neither a quadratic residue nor

14



2.4. JACOBSTHAL MATRICES AND PALEY’S CONSTRUCTION FOR HADAMARD
MATRICES

a quadratic non-residue is largely a matter of convention. Some authors choose to include

0 in the list of quadratic residues, but in order to simplify the statement of subsequent

theorems and definitions we do not.

The next proposition is a generalization to finite fields of a result from elementary num-

ber theory. It will be of use shortly when we introduce Jacobsthal matrices.

Proposition 2.4.3. Let q be an odd prime power. Then there are q−1
2 quadratic residues

and q−1
2 quadratic non-residues in GF(q).

Proof. Since each of the q− 1 nonzero elements of GF(q) is either a quadratic residue

or a quadratic non-residue, we need only show that there are q−1
2 quadratic residues in

GF(q). Let GF(q)∗ denote the multiplicative group of nonzero elements of GF(q). Define

φ : GF(q)∗→ GF(q)∗ by φ(a) = a2. Then φ is a group homomorphism, so by the First

Isomorphism Theorem

GF(q)∗/kerφ ∼= φ(GF(q)∗).

From here, Lagrange’s theorem tells us

|φ(GF(q)∗)|= |GF(q)∗|
|kerφ|

.

Observe that kerφ = {±1}. Indeed, φ(a) = 1 if and only if (a− 1)(a+ 1) = 0, and since

GF(q) has no zero divisors, we must have a =±1. Thus

|φ(GF(q)∗)|= |GF(q)∗|
|{±1}|

=
q−1

2
.

Noting that φ(GF(q)∗) is precisely the set of all quadratic residues in GF(q), the result now

follows.
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2.4. JACOBSTHAL MATRICES AND PALEY’S CONSTRUCTION FOR HADAMARD
MATRICES

Definition 2.4.4. Let q be a prime power. The quadratic character on GF(q) is the function

χq : GF(q)→ Z defined by

χq(a) =


1 if a is a quadratic residue in GF(q)

−1 if a is a quadratic non-residue in GF(q)

0 if a = 0.

Definition 2.4.5. Let q be an odd prime power and let GF(q) = {a1, . . . ,aq}. A Jacobsthal

matrix is a q×q matrix Qq = (qi j) whose entries are defined by

qi j = χq(ai−a j).

Remark 2.4.6. It should be noted that in the above definition we used the phrase a Jacob-

sthal matrix as opposed to the Jacobsthal matrix for good reason. Jacobsthal matrices of

order q are not unique, and instead vary depending on the order in which you index the

elements of GF(q).

Before we proceed, it is instructive to examine some examples of Jacobsthal matrices.

Example 2.4.7 (A Jacobsthal Matrix of Order 3). Since 3 is prime, we can work with Z3

to construct a Jacobsthal matrix of order 3. Observe that

12 ≡ 22 ≡ 1 (mod 3).

It follows that the only quadratic residue in Z3 is 1, and the only non-residue is 2. Therefore,
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indexing the rows and columns of Q3 by 0, 1, and 2, we obtain

Q3 =

0 1 2


0 χ3(0) χ3(−1) χ3(−2)

1 χ3(1) χ3(0) χ3(−1)

2 χ3(2) χ3(1) χ3(0)

=

0 1 2


0 0 − 1

1 1 0 −

2 − 1 0

We will make use of the following important properties of Jacobsthal matrices through-

out the remainder of this thesis.

Theorem 2.4.8. Let q be an odd prime power. Then

(1) If q≡ 1 (mod 4), then Qq is symmetric.

(2) If q≡ 3 (mod 4), then Qq is antisymmetric.

(3) JqQq = QqJq = 0.

(4) QqQT
q = qIq− Jq.

Proof. Before we proceed, we leave it to the reader to verify that χq is a homomorphism

and that

χq(−1) =


1 If q≡ 1 (mod 4)

−1 If q≡ 3 (mod 4).
(2.1)

Using these facts, we prove the theorem. Let Qq = (qi j) and let GF(q) = {a1, . . . ,aq}.

(1) If q ≡ 1 (mod 4), then using the fact that χq is a homomorphism together Equa-

tion (2.1), we obtain

qi j = χq(ai−a j) = χq(−1)χq(a j−ai) = χq(a j−ai) = q ji.

Thus Qq is symmetric.
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(2) Similarly, if q≡ 3 (mod 4), then

qi j = χq(ai−a j) = χq(−1)χq(a j−ai) =−χq(a j−ai) =−q ji.

Thus Qq is antisymmetric.

(3) The definition of Jacobsthal matrices shows that each column sum and row sum of Qq

must be equal to

∑
a∈GF(q)

χq(a).

On the other hand, Proposition 2.4.3 tells us half of the nonzero elements of GF(q) are

quadratic residues and half are non-residues. Together with the fact that χq(0) = 0, this

implies

∑
a∈GF(q)

χq(a) = 0.

Thus each row and column sum of Qq is zero. It is now immediate that

JqQq = QqJq = 0.

(4) Let ri and r j denote the ith and jth row vectors of Qq. Since there are q− 1 nonzero

entries in each row of Qq, each of which is either 1 or −1, we see that if i = j, then
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ri · r j = q−1. Next, assume i 6= j. Then

ri · r j = ∑
b∈GF(q)

χq(ai−b)χq(a j−b)

= ∑
c∈GF(q)

χq(c)χq(a j− (ai− c)) (Where c = ai−b)

= ∑
c∈GF(q)\{0}

χq(c)χq(a j− (ai− c)) (Since χq(0) = 0)

= ∑
c∈GF(q)\{0}

(χq(c))2
χq(1+ c−1(a j−ai)) (c−1 exists since c 6= 0)

= ∑
c∈GF(q)\{0}

χq(1+ c−1(a j−ai)). (Since χq(c) ∈ {±1})

Now, since a j 6= ai, as c runs through all the nonzero elements of GF(q), the term

c−1(a j−ai) runs through all nonzero elements of GF(q). Therefore,

ri · r j = ∑
d∈GF(q)\{1}

χq(d)

=

(
∑

d∈GF(q)
χq(d)

)
−χq(1)

=−χq(1) (By Proposition 2.4.3)

=−1. (Since 1 is a quadratic residue for any q)

In summary, we have shown

ri · r j =


q−1 if i = j

−1 otherwise.

It follows immediately that QqQT
q = qIq− Jq.

With the four properties of Jacobsthal matrices described in the above theorem added
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to our toolkit, we can now present Paley’s two constructions for Hadamard matrices.

Theorem 2.4.9 (Paley, [19]). Let q≡ 3 (mod 4) be a prime power. Then

Iq+1 +

 0 jq

− jT
q Qq


is a Hadamard matrix of order q+1, where jq denotes the 1×q all-ones matrix.

Proof. With Theorem 2.4.8 under our belts, the proof becomes a straightforward calcula-

tion.

Iq+1 +

 0 jq

− jT
q Qq



Iq+1 +

 0 jq

− jT
q Qq




T

= Iq+1 +

 0 − jq

jT
q QT

q

+

 0 jq

− jT
q Qq

+

 0 jq

− jT
q Qq


 0 − jq

jT
q QT

q


= Iq+1 +

 0 − jq

jT
q −Qq

+

 0 jq

− jT
q Qq

+

q 0

0 Jq +(qIq− Jq)

 (By Theorem 2.4.8)

= (q+1)Iq+1.

Theorem 2.4.10 (Paley, [19]). Let q≡ 1 (mod 4) be a prime power. Then

 1 −

− −

⊗ Iq+1 +

 1 1

1 −

⊗
 0 jq

jT
q Qq


is a Hadamard matrix of order 2(q+1), where jq denotes the 1×q all-ones matrix.
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Proof. Let H denote the matrix in the statement of the theorem, let

L =

 1 −

− −

 , and let K =

 1 1

1 −

 .

Now, observing that Qq is symmetric by Theorem 2.4.8 and that LKT =−KLT , we obtain

HHT =

L⊗ Iq+1 +K⊗

 0 jq

jT
q Qq



L⊗ Iq+1 +K⊗

 0 jq

jT
q Qq




T

= (LLT )⊗ Iq+1 +(KKT )⊗


 0 jq

jT
q Qq


 0 jq

jT
q QT

q




= 2I2⊗ Iq+1 +2I2⊗

 q 0

0 Jq +(qIq− Jq)


= 2I2(q+1)+2I2⊗ (qIq+1)

= 2(q+1)I2(q+1).

2.5 The Structure of Jacobsthal Matrices

Recall from the previous section our example of a Jacobsthal matrix of order 3:


0 − 1

1 0 −

− 1 0

 .

This matrix enjoys a nice structure; each row is the same as the previous but with every

element shifted one position to the right (with entries in the last column being wrapped
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around to the first column). Such structure arises so often in the study of combinatorial

matrices that it merits its own definition.

Definition 2.5.1. We call an n× n matrix M =
(
mi j
)

circulant if mi j = mi, j−i+1, where

j− i+1 is reduced modulo n. If this is the case we write M = circ(m1,1,m1,2, ...,m1,n).

It turns out that q = 3 is not the only prime power for which there is a circulant Jacob-

sthal matrix. In fact, whenever q is prime it is possible to construct a circulant Jacobsthal

matrix of order q. Moreover, for any prime power q one can construct a Jacobsthal ma-

trix whose structure is multicirculant. Before we define multicirculant structure, we must

introduce a prerequisite definition.

Definition 2.5.2. We call an n×n matrix M block-circulant if it is of the form

M = circ(M1,M2, ...,Mk),

where each Mi is a matrix of order a and ka = n.

Definition 2.5.3. Let M be a matrix of order n. If n = 1, then we call M a multicirculant

matrix. If n > 1, then we call M multicirculant if and only if it is a block-circulant matrix

whose blocks are multicirculant matrices.

In less formal language, a multicirculant matrix is a block-circulant matrix whose blocks

are block-circulant, whose blocks’ blocks are in turn block-circulant, whose blocks’ blocks’

blocks are also block-circulant, etc. Multicirculant structure is best understood by way of

an example.
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Example 2.5.4. A multicirculant matrix.

It is straightforward to observe that the Kronecker product of two multicirculant ma-

trices is itself a multicirculant matrix. Moreover, if A and B are two multicirculant n× n

matrices such that all their multicirculant blocks are of the same dimensions, then A+B is

also a multicirculant matrix. These facts will be of use in Chapter 3. For the time being,

however, we will content ourselves with proving Jacobsthal matrices can always be made

multicirculant. To begin, we must introduce some new notation.

Given an n×m matrix A= (ai j) with entries in a set S and an element x of S, let [x,A] de-

note the n×m matrix whose entry in its ith row and jth column is the ordered pair (x,ai j). If

ai j is itself an ordered n-tuple (a(1)i j , . . . ,a(n)i j ), then (x,ai j) denotes the ordered (n+1)-tuple

(x,a(1)i j , . . . ,a(n)i j ). We will make use of this notation in our proof that Jacobsthal matrices

can be made multicirculant. We will also make use of the following definition.

Definition 2.5.5. Let p be a prime and m a positive integer and consider the additive group

(Zp)
m. Let S = (si j) be a pm× pm matrix whose rows and columns are indexed by the
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elements of (Zp)
m in the order

(0, . . . ,0,0),(0, . . . ,0,1), . . . ,(0, . . . ,0, p−1),(0, . . . ,0,1,0),(0, . . . ,0,1,1), . . . ,(p−1, . . . , p−1).

(That is, the ordered tuple (a1, . . . ,apm) comes before the ordered tuple (b1, . . . ,bpm) if and

only if the decimal number (a1a2 . . .apm)10 is less than the decimal number (b1b2 . . .bpm)10).

We call S the subtraction table for (Zp)
m if si j = i− j for each i, j ∈ (Zp)

m.

Example 2.5.6. The definition of subtraction tables is quite wordy, so we consider an ex-

ample: the subtraction table for Z2×Z2.

(0, 0) (0, 1) (1, 0) (1, 1)



(0, 0) (0,0) (0,1) (1,0) (1,1)

(0, 1) (0,1) (0,0) (1,1) (1,0)

(1, 0) (1,0) (1,1) (0,0) (0,1)

(1, 1) (1,1) (1,0) (0,1) (0,0)

Notice that the matrix in Example 2.5.6 is multicirculant. This turns out to be true of

the subtraction table for (Zp)
m for any prime p and positive integer m. To prove this, we

define a new class of matrices.

Given a prime p and a positive integer m, we define a pm× pm multicirculant matrix

M(p)
m with entries in (Zp)

m by

M(p)
m =


circ(0, p−1, p−2, . . . ,1) if m = 1

circ([0,M(p)
m−1], [p−1,M(p)

m−1], [p−2,M(p)
m−1], . . . , [1,M

(p)
m−1]) otherwise.
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For example, if p = 2, then

M(2)
1 =

 0 1

1 0

 M(2)
2 =



(0,0) (0,1) (1,0) (1,1)

(0,1) (0,0) (1,1) (1,0)

(1,0) (1,1) (0,0) (0,1)

(1,1) (1,0) (0,1) (0,0)


.

Looking at these matrices, one notices that M(2)
1 is the subtraction table for Z2 and M(2)

2 is

the subtraction table for Z2×Z2. In fact, we can show that M(p)
m is the subtraction table for

(Zp)
m for any prime p and integer m > 0.

Lemma 2.5.7. Let p be a prime and let m be a positive integer. Then M(p)
m is the subtraction

table for (Zp)
m.

Proof. We induct on m. For the base case note that −a ≡ p− a (mod p) for any a ∈ Z.

Using this fact we see that M(p)
1 is the subtraction table for Zp. Now assume the lemma

holds for some positive integer m. Let 0 ≤ i, j ≤ p− 1, let S be the subtraction table for

(Zp)
m, and consider the subtraction table for (Zp)

m+1 as a block matrix composed of pm×

pm blocks. Then the subtraction table for (Zp)
m+1 is composed of p rows of blocks (block

rows) and p columns of blocks (block columns). Let us index these block rows and block

columns from 0 to p−1. Notice that the block in the ith block row and jth block column of

this subtraction table is [i− j,S], where i− j is reduced modulo p so that it lies in the set

{0,1, . . . , p− 1}. By the induction hypothesis S = M(p)
m , so the block in the ith block row

and jth block column of the subtraction table for (Zp)
m+1 is [i− j,M(p)

m ]. It follows that the

subtraction table for (Zp)
m+1 is

circ([0,M(p)
m ], [p−1,M(p)

m ], [p−2,M(p)
m ], . . . , [1,M(p)

m ]).

This is precisely M(p)
m+1, which completes the proof.
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Lemma 2.5.8. Let p be a prime and let m be a positive integer. The subtraction table for

(Zp)
m is multicirculant.

Proof. Lemma 2.5.7 tells us M(p)
m is the subtraction table for (Zp)

m. It is immediate from

the definition of M(p)
m that M(p)

m is multicirculant.

Proposition 2.5.9. Let m be a positve integer and p an odd prime. Then one can construct

a multicirculant Jacobsthal matrix of order pm. If m = 1, then one can construct a circulant

Jacobsthal matrix of order pm.

Proof. As a group under addition, GF(pm) is isomorphic to (Zp)
m. Let

φ : (Zp)
m→ GF(pm)

be such a group isomorphism. Let (Zp)
m = {x1, . . . ,xpm}, where the elements are indexed

such that the pm× pm matrix S = (si j) defined by si j = xi− x j is the subtraction table for

(Zp)
m. Define a Jacobsthal matrix Qpm = (qi j) of order pm by qi j = χ pm(φ(xi)− φ(x j)).

Since φ is an isomorphism, it follows that qi j = χ pm(φ(xi− x j)). Lemma 2.5.8 tells us S is

multicirculant. It follows that Qpm is a multicirculant Jacobsthal matrix of order pm.

2.6 Unit and Butson Hadamard Matrices

In the past century-and-a-half, many generalizations of Hadamard matrices have been

studied. In this thesis we shall concern ourselves with two such generalizations: Butson

Hadamard matrices and unit Hadamard matrices. Butson Hadamard matrices were first

introduced by Butson [3]. Similar to Hadamard matrices, they require their rows to be pair-

wise orthogonal. However, they remove the constraint that their entries must be in the set

{±1}, instead requiring only that their entries are kth roots of unity. Unit Hadamard matri-

ces, first studied by Sylvester [21], further loosen constraints by allowing their entries to be

any complex number of modulus 1. Formally, these matrices are defined in the following

way.
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Definition 2.6.1. A Butson Hadamard matrix is an n× n matrix H whose entries are all

complex kth roots of unity such that HH∗ = nIn. For short, we refer to such a matrix as a

BH(n,k). If all of the entries of H are in C\R, we call H an unreal BH(n,k).

Remark 2.6.2. The reader should be advised that some authors refer to a Butson Hadamard

matrix of order n over kth roots of unity as a BH(k,n) as opposed to our chosen BH(n,k).

Definition 2.6.3. A unit Hadamard matrix is an n×n matrix H whose entries are unimodu-

lar complex numbers such that HH∗ = nIn. For short, we refer to such a matrix as a UH(n).

If all of the entries of H are in C\R, we call H an unreal UH(n).

Remark 2.6.4. The reader should be advised that some authors use the names complex

Hadamard matrix or generalized Hadamard matrix for what we call a unit Hadamard ma-

trix. However, we will avoid these names as they have been used by many different authors

to refer to many different types of matrices.

For an in-depth examination of unit Hadamard matrices and Butson Hadamard matrices,

we refer the reader to [22].

Example 2.6.5. Let ω be a primitive cube root of unity. The following is a BH(3,3) and a

UH(3): 
ω ω

2
ω

2

ω
2

ω ω
2

ω
2

ω
2

ω


As an interesting application of Butson Hadamard matrices, consider BH(n,4)’s, which

were first studied by Turyn [23, 24]. It was shown by Turyn that the existence of a BH(n,4)

implies the existence of a Hadamard matrix of order 2n. This fact is encompassed in the

following theorem:
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Theorem 2.6.6. Let H be a BH(n,4) and let

X =

 1 −

1 1

 and Y =

 − −

1 −

 .

Let H ′ be the matrix obtained by applying the maps ±1 7→ ±X and ±i 7→ ±Y to the entries

of H. Then H ′ is a Hadamard matrix of order 2n.

Similarly to Hadamard matrices, there is a condition on the orders for which BH(n,4)’s

can exist: n must be even. Analogously to the Hadamard conjecture, it is conjectured that

the converse is also true.

Conjecture 2.6.7 (Seberry, cf. [4]). If n is even, then there is a BH(n,4).

In contrast to Hadamard matrices and Butson Hadamard matrices, the orders for which

a unit Hadamard matrix exist are completely determined. This fact is summarized by the

following theorem.

Theorem 2.6.8. There is a unit Hadamard matrix of order n for each n≥ 1.

Proof. We claim that the n×n Fourier matrix F = ( f jk) defined by

f jk = e2πi jk/n

for each 0≤ j,k < n is a UH(n). Indeed, the claim is trivial if n = 1, so assume n > 1 and

let r j and rk be the jth and kth rows of F . Then for j 6= k we have

r j · rk =
n−1

∑
m=0

f jm fkm

=
n−1

∑
m=0

(e2πi( j−k)/n)m.
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Since j 6= k and n > 1, we can apply the geometric series formula.

r j · rk =
1− (e2πi( j−k)/n)n

1− e2πi( j−k)/n
= 0.

On the other hand, if j = k it’s clear that r j · rk = n. Thus FF∗ = nIn.

2.7 The Excess of Unit Hadamard Matrices

In the late seventies the study of the maximum sum of the entries of Hadamard matrices

began to garner researchers’ attention. Pioneering work was done in this area in 1977 by

Best [2]. Later, other authors would generalize the scope of this research to study the

maximum modulus of the sum of the entries, or the excess, of Butson Hadamard matrices

and unit Hadamard matrices (see, for example, [14]). In this thesis, we shall be concerned

both with the excess of Hadamard matrices and unit Hadamard matrices. To begin, we

introduce some notation.

Notation 2.7.1. If A is a matrix, we denote the sum of its entries by S(A).

Two useful properties of S are readily seen to be true:

(1) S(A+B) = S(A)+S(B)

(2) S(A⊗B) = S(A)S(B).

Definition 2.7.1. If H is a unit Hadamard matrix, we define its excess to be the quantity

|S(H)|, and we denote its excess σ(H).

With the excess of unit Hadamard matrices defined, it is natural to ask what is the

maximum excess of all unit Hadamard matrices or Hadamard matrices of a given order. To
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study this problem we present two additional pieces of notation.

Notation 2.7.2. Given a positive integer n, let

σR(n) = max{σ(H) : H is a Hadamard matrix of order n}

and

σU(n) = sup{σ(H) : H is a unit Hadamard matrix of order n}.

We shall refer to these quantities respectively as the maximum excess of real Hadamard

matrices of order n and the maximum excess of unit Hadamard matrices of order n.

In his early study of the maximum excess problem, Best used a clever application of

the Cauchy-Schwarz inequality to prove a nice upper bound for σR(n) [2]. For the sake of

this thesis, we present a more general version of Best’s upper bound which is formulated in

terms of unit Hadamard matrices.

Theorem 2.7.2. Let n be a positive integer. Then σR(n)≤ σU(n)≤ n
√

n.

Proof. The first inequality is clear since all Hadamard matrices are unit Hadamard matrices.

For the second inequality, let H be a unit Hadamard matrix of order n and let ci denote the

ith column sum of H. Let jn denote the 1×n all-ones matrix and use the Cauchy-Schwartz

inequality to observe that

σU(n) =

∣∣∣∣∣∑i
ci

∣∣∣∣∣
≤∑

i
|ci|

= jn · (|c1|, |c2|, ..., |cn|)

≤
√

n∑
i
|ci|2.
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Therefore, it is enough to show ∑i |ci|2 = n2. Notice that

jnHH∗ jT
n = jnnIn jT

n = n2.

However, we also have

jnHH∗ jT
n = [c1 c2 · · · cn] [c1 c2 · · · cn]

∗ = ∑
i
|ci|2.

Thus ∑i |ci|2 = n2 and the result follows.

Best showed that his bound is met by a Hadamard matrix H if and only if all of the row

sums of H are equal. There is a special name for such a Hadamard matrix.

Definition 2.7.3. A Hadamard matrix is called regular if all of its row sums are equal.

For many additional interesting upper and lower bounds on the excess of Hadamard

matrices, we refer the reader to [7, 9, 12, 17].

Before proceeding to the next section, we present one basic fact which will be used

repeatedly in Chapter 3.

Proposition 2.7.4. Let q be an odd prime power and let Q be a Jacobsthal matrix of order

q. Then

S(Q) = 0.

Proof. Recall from Section 2.4 that there are as many quadratic residues as there are quadratic

non-residues in GF(q). Together with the definition of Jacobsthal matrices and of the quad-

tratic character, this implies the result.

2.8 Balanced Incomplete Block Designs

To conclude our the chapter, we switch our focus from Hadamard matrices, their proper-

ties, and their generalizations, to another combinatorial object: balanced incomplete block
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designs. Historically, balanced incomplete block designs were introduced to aid in the de-

sign of experiments. However, in this thesis we shall study balanced incomplete block

designs for their combinatorial intrigue as opposed to their applications in experimental

design.

Definition 2.8.1. A pair (V,B) is called a balanced incomplete block design, or BIBD, with

parameters v,b,r,k,λ if each of the following hold.

1. V is a v-set.

2. B is a collection of b k-subsets (blocks) of V .

3. Each element of V is contained in exactly r blocks.

4. Any 2-subset of V is contained in exactly λ blocks.

For short, we refer to such a design as a BIBD(v,b,r,k,λ).

Example 2.8.2. A BIBD(4,6,3,2,1):

V = {a,b,c,d}

B = {{a,b},{a,c},{a,d},{b,c},{b,d},{c,d}}

It is straightforward to verify that not all parameters of a BIBD are independent, as we

see from the following theorem.

Theorem 2.8.3. In any BIBD(v,b,r,k,λ), we have bk = vr and r(k−1) = λ(v−1).

Proof. Let (V,B) be a BIBD(v,b,r,k,λ), and consider the set

S = {(a,B) : a ∈V, B ∈ B, and a ∈ B}.

To prove the theorem, we determine the cardinality of S in two ways. First, for each block

B, there are k elements of V in B. Since there are b choices for B, it follows that |S|= bk. On
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the other hand, for each element a ∈ V , a appears in exactly r blocks. There are v choices

for a, so |S|= vr. Combining the two expressions for |S|, we obtain bk = vr.

To prove r(k−1) = λ(v−1), let V = {a1, . . . ,av} and define a graph whose nodes are

the elements of V such that there are no loops and there’s an edge between distinct nodes

ai and a j for every block containing both ai and a j. We count the number of edges incident

with ai in two different ways. First of all, there are λ edges between ai and each of the v−1

other nodes since every pair of nodes appear together in λ blocks. Thus there are λ(v−1)

edges incident with ai. On the other hand, ai appears in a total of r blocks, and in each of

these blocks there are k−1 other nodes. Thus there are r(k−1) edges incident with ai. It

follows that r(k−1) = λ(v−1).

Theorem 2.8.3 confirms that not all parameters of a BIBD(v,b,r,k,λ) are independent.

For this reason, BIBD(v,b,r,k,λ)’s are often simply referred to as (v,k,λ)-designs.

It is often inconvenient to represent BIBDs as the sets described in their definition.

When this is the case, it is often much more desirable to represent BIBDs as (0,1)-matrices

as described below.

Definition 2.8.4. Let (V,B) be a BIBD(v,b,r,k,λ) and index the elements of V and B from

1 to v and 1 to b respectively. The incidence matrix of (V,B) is a v×b matrix A = (ai j), in

which ai j = 1 when the ith element of V occurs in the jth block of B , and ai j = 0 otherwise.

The next theorem provides a useful method of verifying whether a given (0,1)-matrix

is the incidence matrix of a BIBD. It amounts to a restatement of the definition of BIBDs in

terms of incidence matrices, and is easily seen to be true after a brief period of reflection. It
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was taken from Colbourn and Dinitz [4], and will be used in Chapter 3.

Theorem 2.8.5. If A is the incidence matrix of a (v,k,λ)-design, then AAT = (r−λ)Iv+λJv

and JvA = kĴ, where Ĵ is the v×b all ones matrix. Moreover, any matrix A satisfying these

conditions also satisfies λ(v− 1) = r(k− 1) and bk = vr; when k < v, it is the incidence

matrix of a (v,k,λ)-design.

With this theorem under our belts, we are ready to move on to study the original results

in this thesis.
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Chapter 3

Results

This chapter is devoted to studying the applications of pairs of n×n matrices A and B with

unimodular entries satisfying AB∗ = BA∗ and BB∗+AA∗ = n(q+1)In for some odd prime

power q. We will see that pairs of matrices with these properties are a valuable tool, and can

be used to construct Hadamard matrices, Butson Hadamard matrices, and unit Hadamard

matrices. Moreover, in certain cases we will see that the combinatorial matrices constructed

using A and B have interesting properties, such as multicirculant structure and large excess.

Finally, as an application we will construct an infinite family of BIBDs.

3.1 Applications of q-Suitable Pairs of Matrices

We begin with a definition that is at the heart of this entire chapter.

Definition 3.1.1. Let q be an odd prime power and let A and B be two n×n matrices. We call

A and B amicable if AB∗ = BA∗. We call the ordered pair (A,B) a q-suitable pair if A and

B are amicable, have exclusively unimodular entries, and satisfy qAA∗+BB∗ = (q+1)nIn.

Any q-suitable pair can be used to obtain a unit Hadamard matrix. In fact, when the

entries of both matrices in a q-suitable pair come strictly from the set {±1}, they can be

used to construct a real Hadamard matrix. This result is summarized in the next theorem.
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Theorem 3.1.2. Let q be an odd prime power, let (A,B) be a q-suitable pair of n× n

matrices, let Q be a Jacobsthal matrix for GF(q), let jq be the 1× q all-ones matrix, and

let I′q+1 be the matrix obtained by negating the first row of Iq+1. Then

(i)

 0 jq

jT
q Q

⊗A+ I′q+1⊗B is a unit Hadamard matrix if q≡ 3 (mod 4).

(ii)

 0 jq

− jT
q Q

⊗A+ i I′q+1⊗B is a unit Hadamard matrix if q≡ 1 (mod 4).

Moreover, if A and B are (±1)-matrices, then the matrix in (i) is a Hadamard matrix, and

if A and B are (±1,±i)-matrices, then the matrices in (i) and (ii) are BH((q+1)n,4)’s.

Proof. Let H1 denote the matrix in (i) and H2 denote the matrix in (ii). Since (A,B) is

a q-suitable pair and since the main diagonal of Q is composed entirely of zeros, we see

that H1 and H2 have exclusively unimodular entries. Recall that QQT = qIq− Jq and that

Q is symmetric if q ≡ 1 (mod 4) and antisymmetric if q ≡ 3 (mod 4). Using these facts

together with the q-suitability of the pair (A,B), we see:

H1H∗1 =

 0 jq

jT
q Q


 0 jq

jT
q QT

⊗AA∗+

 0 jq

− jT
q Q

⊗AB∗

+

 0 − jq

jT
q −Q

⊗BA∗+ Iq+1⊗BB∗

= qIq+1⊗AA∗+ Iq+1⊗BB∗

= Iq+1⊗ (qAA∗+BB∗)

= Iq+1⊗ ((q+1)nIn)

= (q+1)nI(q+1)n.
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Similarly,

H2H∗2 =

 0 jq

− jT
q Q


 0 − jq

jT
q Q

⊗AA∗− i

 0 jq

jT
q Q

⊗AB∗

+ i

 0 jq

jT
q Q

⊗BA∗+ Iq+1⊗BB∗

= qIq+1⊗AA∗+ Iq+1⊗BB∗

= (q+1)nI(q+1)n.

This shows that both H1 and H2 are unit Hadamard matrices. Since the main diagonal of

Q is composed entirely of zeros we see that if A and B are (±1)-matrices, then so is H1,

meaning H1 is a Hadamard matrix. Similarly, if A and B are (±1,±i) matrices, then so are

H1 and H2, meaning H1 and H2 are BH((q+1)n,4)’s.

Remark 3.1.3. Throughout this chapter we will define Q and I′q+1 as we did in Theo-

rem 3.1.2, and we will let jm denote the all-ones 1×m matrix.

Theorem 3.1.2 is an application of q-suitable pairs. Next, we will present a method to

explode any q-suitable pair into two infinite classes of q-suitable pairs, thereby obtaining

two infinite classes of unit Hadamard matrices.
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Theorem 3.1.4. Let q be a prime power and suppose (Y,X) is a q-suitable pair. Let

Xm =


X if m = 0

Jq⊗Ym−1 otherwise
Ym =


Y if m = 0

Iq⊗Xm−1 +Q⊗Ym−1 otherwise

and

Wm =


X if m = 0

Jq⊗Zm−1 otherwise
Zm =


Y if m = 0

Iq⊗Wm−1 + iQ⊗Zm−1 otherwise
.

The matrices Xm and Ym are amicable, as are Wm and Zm. Moreover,

(i) If q≡ 3 (mod 4), then (Ym,Xm) is a q-suitable pair.

(ii) If q≡ 1 (mod 4), then (Zm,Wm) is a q-suitable pair.

Proof. First we remark that since X and Y have exclusively unimodular entries, a basic

induction using the fact that the main diagonal of Q is composed entirely of zeros shows

Xm and Ym have exclusively unimodular entries. To prove the amicability of Xm and Ym

we induct on m. The base case m = 0 is true by assumption. Now suppose Xm and Ym are

amicable for some m≥ 0. Since JqQT = QT Jq = 0, we find

Xm+1Y T
m+1 = (Jq⊗Ym)(Iq⊗Xm +Q⊗Ym)

T

= Jq⊗ (YmX T
m )

= Jq⊗ (XmY T
m )

= (Iq⊗Xm +Q⊗Ym)(Jq⊗Ym)
T

= Ym+1X T
m+1

It follows that Xm and Ym are amicable for each integer m≥ 0. The amicability of Wm and

Zm can be proven similarly.
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Next, we’ll prove (i) by induction on m. Assume q≡ 3 (mod 4), so QT =−Q. As with

amicability, the base case m = 0 is true by assumption. Now suppose (i) holds for some

m ≥ 0. Using the facts that Q is antisymmetric, that QQT = qIq− Jq, and that Xm and Ym

are amicable, we obtain:

Xm+1X T
m+1+qYm+1Y T

m+1

= (Jq⊗Ym)(Jq⊗Ym)
T +q(Iq⊗Xm +Q⊗Ym)(Iq⊗Xm +Q⊗Ym)

T

= qJq⊗YmY T
m +qIq⊗XmX T

m −qQ⊗XmY T
m +qQ⊗YmX T

m +qQQT ⊗YmY T
m

= qJq⊗YmY T
m +qIq⊗XmX T

m +q(qIq− Jq)⊗YmY T
m

= qIq⊗ (XmX T
m +qYmY T

m )

= nqm+1(q+1) Inqm+1

It follows that (i) holds for each integer m≥ 0. We can prove (ii) similarly.

Later it will be of interest to determine the sum of the entries of matrices Xm and Ym

constructed using Theorem 3.1.4. As such, we introduce the following easy proposition.

Proposition 3.1.5. Let q be a prime power and suppose X and Y are two n× n matrices.

Let

Xm =


X if m = 0

Jq⊗Ym−1 otherwise
Ym =


Y if m = 0

Iq⊗Xm−1 +Q⊗Ym−1 otherwise
.

Then for all integers m≥ 0 we have:

(i) S(X2m) = q3mS(X)

(ii) S(Y2m) = q3mS(Y )

(iii) S(X2m+1) = q3m+2S(Y )

(iv) S(Y2m+1) = q3m+1S(X).
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Proof. First recall three facts from Chapter 2:

(1) S(Q) = 0

(2) S(A⊗B) = S(A)S(B) for all matrices A and B.

(3) S(A+B) = S(A)+S(B) whenever A and B have the same dimensions.

Using these facts, observe that the following holds for all m≥ 2:

S(Xm) = S(Jq⊗Ym−1)

= S(Jq)S(Iq⊗Xm−2 +Q⊗Ym−2)

= q2(S(Iq)S(Xm−2)+S(Q)S(Ym−2))

= q3S(Xm−2) (3.1)

Similarly,

S(Ym) = q3S(Ym−2) (3.2)

We can now prove (i) by induction. Note that the base case holds since X0 = X . Now sup-

pose k≥ 0 and that S(X2k) = q3kS(X). Together with Equation 3.1 this implies S(X2(k+1))=

q3S(X2k) = q3(k+1)S(X). This proves that (i) holds for all integers m≥ 0.

Using Eqs. 3.1 and 3.2 it is straightforward to prove (ii), (iii), and (iv) by induction.

We will skip these proofs since they are extremely similar to the proof of (i).

Together, Theorems 3.1.4 and 3.1.2 present us with a tool for constructing infinite

classes of Hadamard and unit Hadamard matrices. According to Theorem 3.1.2, for any

odd prime power q, any q-suitable pair provides us with a unit Hadamard matrix. Accord-

ing to Theorem 3.1.4, any q-suitable pair can be used recursively to obtain an infinite class

of pairs of q-suitable matrices. Therefore, any pair of q-suitable matrices provides us with

an infinite class of unit Hadamard matrices. This establishes the following corollary.
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Corollary 3.1.6. Let q be an odd prime power. If there is a q-suitable pair of n×n matrices

(Y,X), then there is a unit Hadamard matrix of order nqm(q+ 1) for each integer m ≥ 0.

Moreover, there is a BH(nqm(q+1),4) if X and Y are (±1,±i)-matrices. Finally, there is

a Hadamard of order nqm(q+1) if X and Y are (±1)-matrices and q≡ 3 (mod 4).

In addition to the matrices obtained above, any q-suitable pair of matrices of order n

provide us with the means of constructing unit Hadamard matrices of order nqm for each

prime power q ≡ 3 (mod 4) and each integer m ≥ 0. Moreover, we will show that when

q = 3, the aforementioned unit Hadamard matrices are in fact unreal Butson Hadamard

matrices. For this we will require a lemma.

Lemma 3.1.7. Let m be a positive integer. Then 1√
m+1

+ i
√

m√
m+1

is a root of unity if and only

if m = 3. Similarly,
√

m√
m+1

+ i 1√
m+1

is a root of unity if and only if m = 3.

Proof. Let ζ1 =
1√

m+1
+ i

√
m√

m+1
and ζ2 =

√
m√

m+1
+ i 1√

m+1
. If m = 3 then ζ1 is a sixth root of

unity and ζ2 is a twelfth root of unity. For the converse, assume without loss of generality

that ζ1 is a primitive nth root of unity and that ζ2 is a primitive kth root of unity. Notice

that ζ1 and ζ2 are roots of the polynomial x4 + 2m−1
m+1x2 + 1. Thus φ(n) = [Q(ζ1) : Q] ≤ 4

and φ(k) = [Q(ζ2) : Q] ≤ 4, where φ denotes Euler’s totient function. Therefore, we can

conclude that n,k ∈ {1,2,3,4,5,6,8,10,12}. Examining these cases by hand shows that

n = k = 3 is the only allowable possibility.

Theorem 3.1.8. Let q be an odd prime power and let (Y,X) be a q-suitable pair of n× n

(±1)-matrices. Let

K =
1√

q+1
X + i

√
q

q+1
Y

and

L =

√
q

q+1
Y + i

1√
q+1

X .

Then K and L are unreal UH(n)’s. Moreover, if q = 3, then K is an unreal BH(n,6) and L

is an unreal BH(n,12). If q 6= 3, then K and L are not Butson Hadamard matrices.
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Proof. Since X and Y are (±1)-matrices one readily sees that K is a matrix with unimodular

unreal entries. Next, using the q-suitability of the pair (Y,X), observe that:

KK∗ =
(

1√
q+1

X + i
√

q
q+1

Y
)(

1√
q+1

X∗− i
√

q
q+1

Y ∗
)

=
1

q+1
XX∗− i

√
q

q+1
XY ∗+ i

√
q

q+1
Y X∗+

q
q+1

YY ∗

=
1

q+1
(XX∗+qYY ∗))

= nIn.

This shows K is a unit Hadamard matrix. Similarly, we can show L is a unit Hadamard

matrix. Now, if q = 3, then the entries of K are in the set {e2kπi/6 : k = ±1,±2} while the

entries of L are in the set {ekπi/6 : k =±1,±5}. It follows that if q = 3, then K is an unreal

BH(n,6) and L is an unreal BH(n,12). Finally, note that if ζ is an nth root of unity and n is

even, then−ζ and ζ are also nth roots of unity. Therefore, Lemma 3.1.7 shows that if q 6= 3,

then the entries of K and L are not roots of unity, so K and L cannot be Butson Hadamard

matrices.

The following corollary is an immediate consequence of Theorems 3.1.4 and 3.1.8.

Corollary 3.1.9. Let q≡ 3 (mod 4) be a prime power and let m≥ 0 be an integer. If there

is a q-suitable pair of n× n (±1)-matrices, then there is an unreal UH(nqm), an unreal

BH(3mn,6), and an unreal BH(3mn,12).

3.2 A Basic Pair of q-Suitable Matrices

In this section we give a basic example of a q-suitable pair, then appeal to Theo-

rems 3.1.2, 3.1.4, and 3.1.8 to obtain infinite classes of Hadamard matrices, Butson Hadamard

matrices, and unit Hadamard matrices. The recursive construction given in Theorem 3.1.4

yields matrices with very predictable and easily studied properties which are completely

determined by the base case. In particular, the construction lends itself quite nicely to the
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study of the excess and the structure of the matrices it produces, as we shall see in the

coming pages.

The most basic pair of q-suitable matrices is undoubtedly (J1,J1). Indeed, J1 is obvi-

ously amicable with itself, and for any q we have J1JT
1 +qJ1JT

1 = (q+1)I1. Therefore, the

results of Section 3.1 allow us to use J1 to construct infinite classes of Hadamard matrices,

Butson Hadamard matrices, and unit Hadamard matrices.

For each odd prime power q and integer m≥ 0, let

J (q)
m =


J1 if m = 0

Jq⊗A(q)
m−1 otherwise

A(q)
m =


J1 if m = 0

Iq⊗ J (q)
m−1 +Q⊗A(q)

m−1 otherwise

and

C (q)
m =


J1 if m = 0

Jq⊗D(q)
m−1 otherwise

D(q)
m =


J1 if m = 0

Iq⊗C (q)
m−1 + iQ⊗D(q)

m−1 otherwise
.

Since J1 is q-suitable with itself, Theorem 3.1.2 immediately yields the following ma-

trices:

(i)

 0 jq

jT
q Q

⊗A(q)
m +I′q+1⊗J (q)

m is a Hadamard matrix of order qm(q+1) if q≡ 3 (mod 4)

(ii)

 0 jq

− jT
q Q

⊗D(q)
m + iI′q+1⊗C (q)

m is a BH(qm(q+1),4) if q≡ 1 (mod 4).

Similarly, Theorem 3.1.8 yields:

(iii) 1√
q+1J (q)

m + i
√

q
q+1A(q)

m is an unreal unit Hadamard matrix of order qm whenever q≡ 3

(mod 4). If q = 3, then it’s an unreal BH(3m,6).

(iv)
√

q
q+1A(q)

m + i 1√
q+1J (q)

m is an unreal unit Hadamard matrix of order qm whenever q≡ 3

(mod 4). If q = 3, then it’s an unreal BH(3m,12).
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Furthermore, Theorem 3.1.8 tells us that if q 6= 3, then the matrices in (iii) and (iv) are

not Butson Hadamard matrices. It should be noted that unreal BH(3m,6)’s were already re-

cently discovered by Compton et al. [5]. However, the unreal BH(3m,6)’s constructed with

J (3)
m and A(3)

m in (iii) enjoy two properties lacked by the matrices discovered by Compron et

al.: they have maximum excess and can be constructed to be multicirculant by using the ap-

propriate Jacobsthal matrix Q to obtain J (q)
m and A(q)

m . This shall be proved in Section 3.2.2.

First, however, in Section 3.2.1 we study the properties of the matrices in (i).

3.2.1 An Infinite Class of Hadamard Matrices with Large Excess

In this section we turn our attention to the excess of the Hadamard matrices of order

qm(q+ 1) we constructed from J (q)
m and A(q)

m , where q ≡ 3 (mod 4) is a prime power. In

doing so, we will find that J (q)
m and A(q)

m lead us to an infinite family of Hadamard matrices

with large excess. Using these matrices, we will obtain a lower bound for the maximal

excess of a Hadamard matrix of order qm(q+1). Of particular interest, J (q)
m and A(q)

m give

an infinite family of regular Hadamard matrices when m is even and q = 3. For brevity,

throughout this section we will use H(q)
m to denote the Hadamard matrices of order qm(q+1)

obtained from J (q)
m and A(q)

m . That is,

H(q)
m =

 0 jq

jT
q Q

⊗A(q)
m + I′q+1⊗ J (q)

m .

Where no ambiguity arises, we will supress the superscripts on H(q)
m , J (q)

m and A(q)
m .

Proposition 3.1.5 suggests that we must study the excess of H(q)
m in two cases: first when

m is even, and again when m is odd. The even case is the simplest, and we’ll pursue it first.

Using Proposition 3.1.5 it is straightforward to determine the excess of H(q)
2m . This result is
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summarized as follows.

Proposition 3.2.1. Let m≥ 0 be an integer and let q≡ 3 (mod 4) be a prime power. Then

σ(H(q)
2m ) = q3m(3q−1).

Moreover, σ(H(q)
2m ) = (q2m(q+1))3/2 if and only if q = 3.

Proof. Using Proposition 3.1.5 and the fact that S(Q) = 0, we obtain

S(H2m) = S


 0 jq

jT
q Q

⊗A2m + I′q+1⊗ J2m


= 2qS(A2m)+(q−1)S(J2m)

= 2q3m+1S(J1)+(q−1)q3mS(J1)

= q3m(3q−1).

Thus σ(H2m) = q3m(3q−1). For the next part of the lemma, suppose σ(H(q)
2m ) = (q2m(q+

1))3/2. Then

q3m(3q−1) = (q2m(q+1))3/2.

Cancelling q3m from both sides, squaring, then rearranging gives:

q(q−3)2 = 0.

Since q > 0, it follows that q = 3. The converse is true since σ(H2m) = q3m(3q−1).

Recall now from Chapter 2 that n
√

n is an upper bound for the excess of any Hadamard

matrix of order n and that the excess of a Hadamard matrix attains this upper bound if and

only if the matrix is regular. This implies the following two corollaries to Proposition 3.2.1.

Corollary 3.2.2. Let m ≥ 0 be an integer and let q ≡ 3 (mod 4) be a prime power. Then

H(q)
2m is regular if and only if q = 3.

45



3.2. A BASIC PAIR OF Q-SUITABLE MATRICES

Corollary 3.2.3. Let m≥ 0 be an integer and q≡ 3 (mod 4) be a prime power. Then

σR(q2m(q+1))≥ q3m(3q−1)

and

σR(4 ·32m) = (4 ·32m)3/2.

Next, we turn our attention to the Hadamard matrices H(q)
2m+1. Ultimately, we will es-

tablish a lower bound for the excess of these matrices by negating appropriate rows and

columns. To this end, we introduce some new notation.

Notation 3.2.1. Let B =
(
bi j
)

be an n×m matrix. Index the rows and columns of B by

1,2, ...,n and 1,2, ...,m respectively. For each i ∈ {1,2, ...,n} and j ∈ {1,2, ...,m}, let ρi(B)

denote the number of ones in the ith row of B, and let κ j(B) denote the number of ones in

the jth column of B. In other words,

ρi(B) = ∑
k∈{1,...,m}

bik=1

1

and

κ j(B) = ∑
k∈{1,...,n}

bk j=1

1.

Lemma 3.2.4. Let m ≥ 0 be an integer, let q ≡ 3 (mod 4) be a prime power, let i ∈

{1,2, ...,q2m}, and let j ∈ {1,2, ...,q2m+1}. Then both of the following hold:

(i) ρi(A
(q)
2m ) = κi(A

(q)
2m ) = qm(qm+1)

2

(ii) ρ j(A
(q)
2m+1) = κ j(A

(q)
2m+1) =

qm(qm+1+1)
2 .
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Proof. First it should be recalled that if m≥ 2, then

Am = Iq⊗ Jm−1 +Q⊗Am−1 = Iq⊗ Jq⊗Am−2 +Q⊗Am−1.

Now observe that since the main diagonal of Q is composed entirely of zeros, the entry in

the kth row and lth column of Iq⊗ Jq⊗Am−2 is nonzero if and only if the entry in the kth

row and lth column of Q⊗Am−1 is zero. Therefore, for each i ∈ {1,2, . . . ,qm} we have

ρi(Am) = ρi(Iq⊗ Jq⊗Am−2 +Q⊗Am−1)

= ρi(Iq⊗ Jq⊗Am−2)+ρi(Q⊗Am−1).

Together with the fact that each row and column of Q contains q−1
2 ones, q−1

2 negative ones,

and a single zero, this implies that for each i ∈ {1,2, ...,qm} and m≥ 2 we have

ρi(Am) = qρa(Am−2)+
qm−1(q−1)

2
(3.3)

and

κi(Am) = qκa(Am−2)+
qm−1(q−1)

2
, (3.4)

where a denotes the unique element of {1,2, ...,qm−2} such that i ≡ a (mod qm−2). From

here we prove (i) and (ii).

(i) We induct on m. First we prove ρi(A2m) =
qm(qm+1)

2 . For the base case, recall that

A0 = J1, so ρ1(A0) = 1. Now let k≥ 0 be an integer and suppose the lemma holds for

m = k. Let i ∈ {1,2, ...,q2(k+1)} and let a denote the unique element of {1,2, ...,q2k}
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such that i≡ a (mod q2k). Applying Equation (3.3) gives

ρi(A2(k+1)) = qρa(A2k)+
q2k+1(q−1)

2

= q · q
k(qk +1)

2
+

q2k+1(q−1)
2

=
qk+1(qk+1 +1)

2
,

where the second line follows from the induction hypothesis. Thus ρi(A2m)=
qm(qm+1)

2

for all positive integers m. The validity of the formula κi(A2m) =
3m(3m+1)

2 can be

demonstrated by replacing ρ with κ in the above proof, and by appealing to Equa-

tion (3.4) instead of Equation (3.3).

(ii) This part can be proved with an almost identical induction to the proof of (i).

Corollary 3.2.5. Let m ≥ 0 be an integer, let q ≡ 3 (mod 4) be a prime power, and let

i ∈ {1,2, ..,q2m+1}. Then

ρi(J
(q)
2m+1) = κi(J

(q)
2m+1) =

qm+1(qm +1)
2

.

Proof. The corollary is easily verified for m = 0, so assume m > 0. In that case we have

J2m+1 = Jq⊗A2m,

hence

ρi(J2m+1) = qρa(A2m)

and

κi(J2m+1) = qκa(A2m),
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where a is the unique element of {1,2, ...,q2m} such that i ≡ a (mod q2m). The corollary

follows by applying Lemma 3.2.4.

Lemma 3.2.6. Let m≥ 0 be an integer, let q≡ 3 (mod 4) be a prime power, and consider

the Hadamard matrix H(q)
2m+1. The first q2m+1 row sums of H(q)

2m+1 are zero. Likewise, the

first q2m+1 column sums of H(q)
2m+1 are zero.

Proof. Due to Lemma 3.2.4 and the definitions of H2m+1 and J2m+1, it suffices to only show

that the first q2m+1 row sums of H2m+1 are zero. Now note that since the first row of I′q+1 is

(−1,0,0, . . . ,0), for each i ∈ {1, . . . ,q2m+1} we have

ρi
(
I′q+1⊗ J2m+1

)
= q2m+1−ρi(J2m+1).

Together with Lemma 3.2.4 and Corollary 3.2.5, this implies that for each i∈ {1, ...,q2m+1}

we have

ρi (H2m+1) = ρi


 0 jq

jT
q Q

⊗A2m+1 + I′q+1⊗ J2m+1


= ρi


 0 jq

jT
q Q

⊗A2m+1

+ρi
(
I′q+1⊗ J2m+1

)
= qρi(A2m+1)+q2m+1−ρi(J2m+1)

=
qm+1(qm+1 +1)

2
+q2m+1− qm+1(qm +1)

2

=
q2m+1(q+1)

2

Therefore, each of the first q2m+1 rows of H2m+1 contains q2m+1(q+1)
2 ones. Since H2m+1 is

of order q2m+1(q+ 1), the remaining q2m+1(q+1)
2 entries in each of the first q2m+1 rows are

negative ones, so each of the first q2m+1 row sums of H2m+1 are zero.
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Lemma 3.2.7. Let m≥ 0 be an integer and let q≡ 3 (mod 4) be a prime power. Then

σ(H(q)
2m+1) = q3m+2(q+1).

Proof. Applying Proposition 3.1.5, observe that

S(H2m+1) = S


 0 jq

jT
q Q

⊗A2m+1 + I′q+1⊗ J2m+1


= 2q3m+2S(J0)+(q−1)q3m+2S(A0)

= q3m+2(q+1).

The result is now immediate.

When q≡ 3 (mod 4) is a prime power, the following lemma will help us to establish a

lower bound for σR(q2m+1(q+1)).

Lemma 3.2.8 (Kharaghani, [13]). Let H =

 A C

B D

 and G=

 A −C

−B D

 be two block

matrices. If S(B) = S(C) =−S(A), then S(G) = S(H)+4S(A).

Proof. Observe that

S(H)+4S(A) = S(A)+S(B)+S(C)+S(D)+4S(A)

= S(A)−S(A)−S(A)+S(D)+4S(A)

= S(A)−S(B)−S(C)+S(D)

= S(G).
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Theorem 3.2.9. Let m≥ 0 be an integer and let q≡ 3 (mod 4) be a prime power. Then

σR(q2m+1(q+1))≥ q3m+2(q+1)+2qm+2(qm−1).

Proof. Recall that

H2m+1 =

 0 jq

jT
q Q

⊗A2m+1 + I′q+1⊗ J2m+1.

We show that by negating q rows and q columns of H2m+1, we obtain a Hadamard matrix

of excess q3m+2(q+1)+2qm+2(qm−1). By Lemma 3.2.6, the first q2m+1 row and column

sums of H2m+1 are zero. Since −J2m+1 =−Jq⊗A2m, it is clear that rows

1, q2m +1, 2 ·q2m +1, . . . , (q−1)q2m +1

of −J2m+1 are all the same. Moreover, Corollary 3.2.5 tells us that there are exactly

q2m+1− qm+1(qm +1)
2

=
qm+1(qm−1)

2

ones in each of these q identical rows. Therefore, by permuting the corresponding rows and

columns of H2m+1 we can obtain an equivalent Hadamard matrix with a q× qm+1(qm−1)
2 block

of ones in its top left-hand corner and whose first q2m+1 row and column sums are zero. Call

this new Hadamard matrix H ′2m+1. Notice that S(H ′2m+1) = S(H2m+1). Now negate the first

q rows and the first qm+1(qm−1)
2 columns of H ′2m+1 to obtain a third equivalent Hadamard

matrix, say H ′′2m+1. Then H ′2m−1 and H ′′2m−1 satisfy the conditions of Lemma 3.2.8, so

S(H ′′2m+1) = S(H2m+1)+4 · q
m+2(qm−1)

2
.
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Appealing to Lemma 3.2.7 and simplifying, we obtain:

S(H ′′2m+1) = q3m+2(q+1)+2qm+2(qm−1).

It follows that σR(q2m+1(q+1))≥ q3m+2(q+1)+2qm+2(qm−1).

It is interesting to asymptotically compare the lower bound for σR(q2m+1(q+1)) given

by Theorem 3.2.9 with Best’s upper bound (q2m+1(q + 1))3/2 given by Theorem 2.7.2.

Doing so, one can use the squeeze theorem to find

lim
m→∞

(q2m+1(q+1))3/2

q3m+2(q+1)+2qm+2(qm−1)
=

√
q+1

q
. (3.5)

This suggests that the two bounds are very similar asymptotically. In Table 3.1, we explic-

itly compare these bounds for orders less than 1000. The bounds compare very well for all

cases shown in the table except the last line, when q = 3 and m = 2. In fact, the lower bound

given by Theorem 3.2.9 meets the largest known excess given by Jenkins et al. [12] in all

cases except when q = 3, m = 2. Moreover, our bound is known to be the maximum excess

when q = 3 and m = 0 [2]. Together with the asymptotic comparison in Equation (3.5), this

suggests the following problem.

Problem 3.2.2. Let m≥ 0 be an integer, let q≡ 3 (mod 4) be a prime power, and let C be

the set of all Hadamard matrices equivalent to H(q)
2m+1. Does the following equation hold?

max
H∈C

σ(H)
?
= q3m+2(q+1)+2qm+2(qm−1).
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Table 3.1: Excess of Hadamard Matrices of Order q2m+1(q+1)< 1000

Order
q2m+1(q+1) q m

Best’s Bound
(q2m+1(q+1))

3
2

Theorem 3.2.9
Bound

12 3 0 42 36**
56 7 0 419 392*

108 3 1 1122 1080*
132 11 0 1517 1452*
380 19 0 7408 7220*
552 23 0 12969 12696*
756 27 0 20787 20412*
972 3 2 30304 27540

* largest known excess according to [12]

** maximum excess

3.2.2 An Infinite Class of Unreal Multicirculant Unit Hadamard Matrices of Maxi-

mum Excess

Recall that when q ≡ 3 (mod 4) is a prime power, J (q)
m and A(q)

m give us the following

infinite classes.

(i) 1√
q+1J (q)

m + i
√

q
q+1A(q)

m is an unreal unit Hadamard matrix of order qm. If q = 3, then

it’s an unreal BH(3m,6).

(ii)
√

q
q+1A(q)

m + i 1√
q+1J (q)

m is an unreal unit Hadamard matrix of order qm. If q = 3, then

it’s an unreal BH(3m,12).

At the beginning of Section 3.2, we commented that the unreal BH(3m,6)’s in (i) have

maximum excess and can be constructed to be multicirculant by using the appropriate

choice of Jacobsthal matrix Q in the definition of J (q)
m and A(q)

m . This distinguishes our

BH(3m,6)’s from the unreal BH(3m,6)’s obtained by Compton et al. in [5]. However, the

unreal BH(3m,6)’s in (i) are not the only multicirculant, orthogonal matrices we can obtain

from J (q)
m and A(q)

m . In this section we will show that all of the unit Hadamard matrices of

order qm in (i) and (ii) have maximum excess and can be constructed in such a way that

they are multicirculant.
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Lemma 3.2.10. Let m ≥ 0 be an integer and q ≡ 3 (mod 4) a prime power. By using the

correct Jacobsthal matrix in the definition of J (q)
m and A(q)

m , it is possible to make J (q)
m and

A(q)
m multicirculant.

Proof. Recall the definition of J (q)
m and A(q)

m .

J (q)
m =


J1 if m = 0

Jq⊗A(q)
m−1 otherwise

A(q)
m =


J1 if m = 0

Iq⊗ J (q)
m−1 +Q⊗A(q)

m−1 otherwise.

We know from Proposition 2.5.9 that we can choose the Jacobsthal matrix Q in this defini-

tion to be multicirculant. Now recall that the Kronecker product of multicirculant matrices

is multicirculant, and that the sum of two multicirculant matrices is multicirculant as long

as all of the multicirculant blocks in both summands have the same dimensions. Using

these facts together with the fact that Jq and Iq are multicirculant, a simple induction shows

J (q)
m and A(q)

m are multicirculant whenever Q is multicirculant.

Theorem 3.2.11. Let m ≥ 0 be an integer and let q ≡ 3 (mod 4) be a prime power. Then

there exists an unreal multicirculant unit Hadamard matrix of order qm with excess q
3m
2 .

Moreover, there exists an unreal multicirculant BH(3m,6) and BH(3m,12), both with excess

3
3m
2 .

Proof. According to Lemma 3.2.10, we can choose J (q)
m and A(q)

m to be multicirculant. Let

K(q)
m =

1√
q+1

J (q)
m + i

√
q

q+1
A(q)

m

and

L(q)
m =

√
q

q+1
A(q)

m + i
1√

q+1
J (q)

m .

We established at the beginning of Section 3.2 that these matrices are unreal unit Hadamard

matrices of order qm. Since J (q)
m and A(q)

m are multicirculant and all their multicirculant

blocks have the same dimensions, K(q)
m and L(q)

m are also multicirculant. To compute the
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excess of K(q)
m and L(q)

m we consider separately the cases when m is odd and even. First, use

Proposition 3.1.5 to observe that

S
(

K(q)
2m

)
=

1√
q+1

S (J2m)+ i
√

q
q+1

S (A2m)

=
1√

q+1
q3mS(J0)+ i

√
q

q+1
q3mS(A0)

=
q3m
√

q+1
(1+ i

√
q) .

Therefore,

σ

(
K(q)

2m

)
=

∣∣∣∣ q3m
√

q+1
(1+ i

√
q)
∣∣∣∣= q

3(2m)
2 .

Using a similar computation one can show that

σ

(
K(q)

2m+1

)
= q

3(2m+1)
2 .

Therefore, for any m≥ 0 we have

σ

(
K(q)

m

)
= q

3m
2 .

Similarly, one can show that

σ

(
L(q)

m

)
= q

3m
2 .

Finally, Theorem 3.1.8 tells us that if q= 3, then K(q)
m and L(q)

m are BH(3m,6)’s and BH(3m,12)’s

respectively, which completes the proof.

Corollary 3.2.12. If m≥ 0 is an integer and q≡ 3 (mod 4) is a prime power, then

σU(qm) = q
3m
2 .

Proof. Since n
√

n is an upper bound for the excess of any unit Hadamard matrix of order

n, Theorem 3.2.11 implies the result.
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3.2.3 A Family of BIBDs

As a final application of J (q)
m and A(q)

m , we show that they can be used to obtain a BIBD

with parameters q2m+2,q2m+1(q+1), qm(qm+1−1)(q+1)
2 , qm+1(qm+1−1)

2 , qm(qm+1−2)(q+1)
4 for each

prime power q≡ 3 (mod 4) and integer m≥ 0 .

Theorem 3.2.13. There is a (q2m+2, qm+1(qm+1−1)
2 , qm(qm+1−2)(q+1)

4 )-design for each integer

m≥ 0 and prime power q≡ 3 (mod 4).

Proof. Let

M =

(
jT
q Q

)
⊗A2m+1 +

(
0q×1 Iq

)
⊗ J2m+1,

where 0q×1 denotes the q× 1 zero matrix. Since A2m+1 and J2m+1 are q-suitable, Theo-

rem 3.1.2 tells us that the row vectors of M are mutually orthogonal and that M is a (±1)-

matrix. Now let Ĵ be the q2m+2×q2m+1(q+1) all-ones matrix and let B= 1
2(Ĵ−M). We use

Theorem 2.8.5 to show that B is the incidence matrix of a (q2m+2, qm+1(qm+1−1)
2 , qm(qm+1−2)(q+1)

4 )-

design. It is clear from the definitions of Ĵ and M that B is a (0,1)-matrix. Using the fact

that the row vectors of M are mutually orthogonal, notice that

BBT =
1
4
(Ĵ−M)(ĴT −MT )

=
1
4
(q2m+1(q+1)Jq2m+2− ĴMT −MĴ T +q2m+1(q+1)Iq2m+2).

(3.6)

Next, observe that Lemma 3.2.4 and Corollary 3.2.5 imply that all row sums of M are equal

to qm(q+1). Applying this fact to Equation (3.6) yields:

BBT =
1
4
(q2m+1(q+1)Jq2m+2−2qm(q+1)Jq2m+2 +q2m+1(q+1)Iq2m+2)

=
qm(qm+1−2)(q+1)

4
Jq2m+2 +

(
qm(qm+1−1)(q+1)

2
− qm(qm+1−2)(q+1)

4

)
Iq2m+2.

(3.7)

Now note that Lemma 3.2.4 and Corollary 3.2.5 imply that all column sums of B are equal
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to qm+1(qm−1)
2 . It follows that

Jq2m+2B =
qm+1(qm+1−1)

2
Ĵ. (3.8)

Finally, observe that
qm+1(qm+1−1)

2
< q2m+2. (3.9)

Theorem 2.8.5 together with Equations (3.7), (3.8) and (3.9) imply that B is the incidence

matrix of a (q2m+2, qm+1(qm+1−1)
2 , qm(qm+1−2)(q+1)

4 )-design.

3.3 A Second Example of q-Suitable Matrices

In this section we’ll explore a second example of a q-suitable pair. Again, we will use

Theorem 3.1.4 to explode the pair of q-suitable matrices into an infinite class of q-suitable

matrices, thereby obtaining an infinite class of Hadamard matrices from Theorem 3.1.2.

Similar to our first example of q-suitable matrices, we will find that the Hadamard matrices

obtained in this section will again have large excess. Without further ado, let’s examine the

motivation for our next construction.

Let Y be the core of a symmetric, standardized Hadamard matrix of order n+1. Let X

be the n×n matrix defined by X = circ(−,1,1, . . . ,1). It’s straightforward to see that

XXT = 4In +(n−4)Jn

and

YY T = (n+1)In− Jn.

Therefore,

XXT +(n−4)YY T = n(n−3)In.

This suggests that if n−4 is equal to some odd prime power q, then there’s hope that (Y,X)
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may be a q-suitable pair (of course, we’d still need to check amicability). It’s straightfor-

ward to check for which q we have n−4 = q. Indeed, assume n−4 = q. Then since n+1 is

the order of a Hadamard matrix, we must have q+4 = n≡ 3 (mod 4), so q≡ 3 (mod 4).

Therefore, (Y,X) is a q-suitable pair if n = q+4 for some prime power q≡ 3 (mod 4) and

if X and Y are amicable. It turns out that it’s not difficult to establish the amicability of X

and Y , as we will show in the proof of the following proposition.

Proposition 3.3.1. Let q ≡ 3 (mod 4) be a prime power, let X be the (q+ 4)× (q+ 4)

matrix defined by X = circ(−,1,1, . . . ,1), and let Y be the core of a symmetric, standardized

Hadamard matrix of order q+5. Then (Y,X) is a q-suitable pair.

Proof. We proved above that XXT +qYY T = (q+1)(q+4)Iq+4, so it remains to show that

X and Y are amicable. Note that X = Jq+4−2Iq+4. Also, since Y is the core of a symmetric,

standardized Hadamard matrix, we have Jq+4Y T = Y Jq+4 =−Jq+4. Therefore,

XY T = (Jq+4−2Iq+4)Y T =−Jq+4−2Y T =−Jq+4−2Y = Y (Jq+4−2Iq+4)
T = Y XT .

Thus X and Y are amicable, so (Y,X) is a q-suitable pair as claimed.

Let q, X , and Y be as described in Proposition 3.3.1. Since (Y,X) is a q-suitable pair,

it is easy to see that (−Y,X) is also q-suitable. In what follows, we will work with −Y

and X in lieu of Y and X for reasons that shall be explained shortly. Since the pair (−Y,X)

is q-suitable, we can use −Y and X along with the results of Section 3.1 to obtain infinite

classes of Hadamard, Butson Hadamard, and unit Hadamard matrices. More specifically,

let

X (q)
m =


X if m = 0

Jq⊗Y (q)
m−1 otherwise

Y (q)
m =


−Y if m = 0

Iq⊗X (q)
m−1 +Q⊗Y (q)

m−1 otherwise.
(3.10)
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Then Theorem 3.1.4 and Proposition 3.3.1 tell us that the matrices X (q)
m and Y (q)

m are ami-

cable and that

X (q)
m (X (q)

m )T +qY (q)
m (Y (q)

m )T = qm(q+4)(q+1)I(q+4)qm.

Therefore, Theorem 3.1.2 implies

(i)

 0 jq

jT
q Q

⊗Y (q)
m +I′q+1⊗X (q)

m is a Hadamard matrix of order qm(q+1)(q+4) when-

ever q≡ 3 (mod 4)

Similarly, Theorem 3.1.8 yields:

(ii) 1√
q+1X (q)

m + i
√

q
q+1Y (q)

m is an unreal unit Hadamard matrix of order qm(q+ 4). If

q = 3, then it’s an unreal BH(7 ·3m,6).

(iii)
√

q
q+1Y (q)

m + i 1√
q+1X (q)

m is an unreal unit Hadamard matrix of order qm(q+ 4). If

q = 3, then it’s an unreal BH(7 ·3m,12).

It should be noted that unreal Butson Hadamard matrices of the same parameters as in (ii)

and (iii) can be obtained from the work of Compton et al. in [5]. Unfortunately, the unreal

Butson Hadamard matrices in (ii) and (iii) do not enjoy the same multicirculant structure

or maximum excess as those presented in Section 3.2. Instead, they merely provide an

alternate construction to that given by Compton et al.

The matrices from (i) can be used to obtain another interesting lower bound for the

maximum excess problem. It is straightforward to compute the excess of these matrices

using Proposition 3.1.5, and the outcomes of these computations are given in the following

two theorems.

Theorem 3.3.2. Let m≥ 0 be an integer and let q≡ 3 (mod 4) be a prime power. If there

is a symmetric, standardized Hadamard matrix of order q+5, then

σR(q2m(q+1)(q+4))≥ q3m(q+1)(q+2)(q+4).
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Proof. Let X = Jq+4−2Iq+4 and let Y be the core of a symmetric, standardized Hadamard

matrix of order q+5. Form the matrices X (q)
2m and Y (q)

2m as defined in Equation (3.10). Then,

as established above this theorem, the following is a Hadamard matrix of order q2m(q+

1)(q+4).  0 jq

jT
q Q

⊗Y (q)
2m + I′q+1⊗X (q)

2m

Negating the first q2m(q+ 4) columns of this matrix, we obtain an equivalent Hadamard

matrix:  0 jq

− jT
q Q

⊗Y (q)
2m + Iq+1⊗X (q)

2m .

Now, using Proposition 3.1.5 observe that

S


 0 jq

− jT
q Q

⊗Y (q)
2m + Iq+1⊗X (q)

2m

= S(Iq+1)S(X
(q)
2m )

= (q+1)q3mS(X)

= q3m(q+1)(q+2)(q+4).

Thus σR(q2m(q+1)(q+4))≥ q3m(q+1)(q+2)(q+4).

Theorem 3.3.3. Let m≥ 0 be an integer and let q≡ 3 (mod 4) be a prime power. If there

is a symmetric, standardized Hadamard matrix of order q+5, then

σR(q2m+1(q+1)(q+4))≥ q3m+2(q+4)(3q+3).

Proof. Let X = Jq+4−2Iq+4 and let Y be the core of a symmetric, standardized Hadamard

matrix of order q+ 5. Form the matrices X (q)
2m+1 and Y (q)

2m+1 as defined in Equation (3.10).

Then, as established above this theorem, the following is a Hadamard matrix of order
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q2m+1(q+1)(q+4).  0 jq

jT
q Q

⊗Y (q)
2m+1 + I′q+1⊗X (q)

2m+1

We compute its excess to prove the theorem. Appealing to Proposition 3.1.5, we have

S


 0 jq

jT
q Q

⊗Y (q)
2m+1 + I′q+1⊗X (q)

2m+1

= 2qS(Y (q)
2m+1)+(q−1)S(X (q)

2m+1)

= 2qq3m+1S(X)+(q−1)q3m+2S(−Y )

= 2q3m+2(q+2)(q+4)+(q−1)q3m+2(q+4)

= q3m+2(q+4)(3q+3).

Therefore, σR(q2m+1(q+1)(q+4))≥ q3m+2(q+4)(3q+3).

Remark 3.3.4. In the proof of Theorem 3.3.3 we saw the justification for using −Y in the

definition of X (q)
m and Y (q)

m in lieu of Y . Namely, S(−Y )> S(Y ), which helped us obtain a

larger lower bound for the maximal excess problem.

Similarly to in Section 3.2, it is interesting to asymptotically compare the lower bounds

in Theorems 3.3.2 and 3.3.3 with Best’s n
√

n upper bound given in Theorem 2.7.2. Doing

so, one finds

lim
m→∞

q3m(q+1)(q+2)(q+4)
(q2m(q+1)(q+4))3/2 =

q+2√
(q+1)(q+4)

(3.11)

lim
m→∞

q3m+2(q+4)(3q+3)
(q2m+1(q+1)(q+4))3/2 =

3q2

q3/2
√

(q+1)(q+4)
(3.12)

These limits show that asymptotically, the bound given in Theorem 3.3.2 is very similar

to Best’s n
√

n bound, while the bound given in Theorem 3.3.3 differs asymptotically from

Best’s n
√

n bound by a factor of q1/2. In Table 3.2, we explicitly compare these bounds for

orders less than 1000. The bounds compare very well for all cases shown in the table except
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[ht]
Table 3.2: Excess of Hadamard Matrices of Order qm(q+1)(q+4)< 1000

Order
qm(q+1)(q+4) q m Best’s

Bound
X (q)

m ,Y (q)
m

Construction
28 3 0 148 140*
84 3 1 770 756*
88 7 0 826 792*

180 11 0 2415 2340*
252 3 2 4000 3780*
460 19 0 9866 9660*
616 7 1 15289 12936
648 23 0 16495 16200*
756 3 3 20787 20412*
868 27 0 25573 25172*

* largest known excess according to [12]

** maximum excess

for order 616. In fact, the lower bounds given by Theorems 3.3.2 and 3.3.3 meet the largest

known excess given by Jenkins et al. [12] in all cases except for order 616. Moreover, our

bound is known to be the maximum excess for orders 28 and 84 [12]. However, it should be

noted that the apparent agreement in Table 3.2 of our bounds with Best’s bound when m is

odd is simply due to the fact that m is small in our table, as is indicated by Equation (3.12).

On the other hand, Equation (3.11) suggests that the bounds in Theorem 3.3.2 should com-

pare quite well with Best’s bound not only for the smaller values of m shown in the table,

but for larger values as well. Together with the fact that our bounds attain the maximum

known excesses given in [12] when m is even, this suggests the following problem.

Problem 3.3.1. Let m≥ 0 be an integer and let q≡ 3 (mod 4) be a prime power. Does the

following equality hold?

σR(q2m(q+1)(q+4)) ?
= q3m(q+1)(q+2)(q+4).

If it does not hold for each m and q, when does it hold?
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