Let X and Y be compact Hausdorff topological spaces. The space $C(X)$ of all real-valued functions on X with the supremum norm $\|f\| = \sup_{x \in X} |f(x)|$ is a fundamental example in functional analysis. The classical Banach-Stone Theorem states that any linear isometry T from $C(X)$ onto $C(Y)$ has the form $Tf = g \cdot (f \circ \varphi)$, where $\varphi : Y \to X$ is an onto homeomorphism and g is a function in $C(Y)$ such that $|g| = 1$. Extensions of this result abound. In this talk, I will discuss a characterization of linear isometries between certain subspaces of Banach-space valued spaces of continuous functions. The result is motivated by some prior results on isometries between some spaces of vector-valued differentiable functions.

This talk is based on on-going joint work with and Ya-shu Wang (National Chung Hsing U, Taiwan) and Ngai-Ching Wong (National Sun Yat-sen University, Taiwan)