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Abstract

It is the purpose of this essay to explore the relationships of a particular
collection of group matrices, namely, balanced generalized weighing matri-
ces, to related combinatorial configurations. In particular, we will endevour
to apply these most interesting objects to the construction of symmetric
balanced incomplete block designs; orthogonal designs; and binary, constant
weight codes.

The entries of the balanced generalized weighing matrices used here will
be from a particular subgroup of the automorphism group of the objects
to which they are being applied. This application of group members will
be effected through a generalized Kronecker product. These constructions
will lead both to novel constructions of known families of objects and to
constructions of parametrically new families of objects.

iii





Contents

Acknowledgments i

Abstract iii

Introduction vii

I Combinatorial Preliminaries 1

1 Balanced Incomplete Block Designs 3
1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Resolvability . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Weighing Matrices 16
2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Related Configurations . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Generalizations 31
3.1 Generalizations of Weighing Matrices . . . . . . . . . . . . . . 31
3.2 Intra-Positional Balance . . . . . . . . . . . . . . . . . . . . . 37
3.3 Classical Parameter BGW Matrices . . . . . . . . . . . . . . . 39
3.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

II Constructions 45

4 The Kronecker Product 47
4.1 Definitions and Properties . . . . . . . . . . . . . . . . . . . . 47
4.2 Structurally Interesting BGW Matrices . . . . . . . . . . . . 49
4.3 Applications to BIBDs and GBRDs . . . . . . . . . . . . . . . 53

v



CONTENTS vi

4.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Hadamard Matrices 61
5.1 Quaternary Unit Hadamard Matrices . . . . . . . . . . . . . . 61
5.2 Morphisms of QUH Matrices . . . . . . . . . . . . . . . . . . 65
5.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Orthogonal Designs and Constant Weight Codes 69
6.1 Main Constructions . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 A Recursive Method . . . . . . . . . . . . . . . . . . . . . . . 77
6.3 Constant Weight Codes . . . . . . . . . . . . . . . . . . . . . 80
6.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Bibliography 84

Index of Terms 88

Index of Notations 93



Introduction

Weighing matrices have captivated researchers for a century now, and
interest in these objects has proliferated precipitously as new and impor-
tant applications are continually being found. Towards constructing these
objects, researchers have, as is so often the case in mathematics, abstracted
away from particulars and applied these general properties to new objects.
Of these more general objects, we will be concerning ourselves with the
so-called balanced generalized weighing matrices (henceforth, BGWs).

BGW matrices are a kind of group matrix, whose entries come from
some finite group and also include the symbol 0. Alternatively, if G is our
finite group, and if R is some commutative ring, then we take the entries of
the matrix from the group ring R[G]. Importantly, these matrices exhibit
a kind of balance between the various rows and columns. By setting all of
the non-zero entries of the BGW to unity, one sees that we now have the
incidence matrix of a block design; hence, the entries of the matrix have a
kind of inter-positional balance. More than this, however, the entries, as
we will see, are also balanced with respect to the group itself; that is, the
matrix also displays a kind of intra-positional balance. It is these properties
that make these matrices most intriguing and applicable.

Since the following applications of BGWs will be to a number of different
objects, we must, therefore, begin with some preliminaries before proceeding
to the constructions. Part I will consist of these preliminaries that will place
BGWs in their proper place and will contain Chapters 1–3.

Chapter 1 will introduce the idea of incidence necessary to study such
objects. In particular, we will introduce the very general incidence structres
and use these to define the needed balanced incomplete block designs. Ele-
mentary properties of these objects will be described, and we will introduce
the important idea of resolvability of a block design.

In Chapter 2 we will introduce the most basic weighing matrices, namely,
those whose entries are from the set {−1, 0, 1}. Motivation for these objects
will be discussed, as will their properties. Following this, important ex-
amples of such matrices are developed, and we place these objects in their
appropriate place by inviting the reader to consider many of their relations
to other combinatorial objects that are of interest presently.

Chapter 3 will contain many examples of generalizations of weighing
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INTRODUCTION viii

matrices. It is in this chapter that we introduce BGW matrices, and we
construct the important family of classical-parameter BGWs. We show that
BGWs are an extremal case of the so-called generalized Bhaskar Rao designs.

After the conclusion of the preliminaries, Part II will introduce the con-
structions developed over the course of the preparation of this essay. These
will be developed over Chapters 4–6.

Chapter 4 will introduce the Kronecker product, and will present several
of its elementary properties. We then generalize this product in such a
way that we can use a BGW matrix as the multiplicand of the product.
This realization allows us to construct BGW matrices that have additional
symmetries, namely, they will be symmetric and skew-symmetric, predicated
on simple parametric conditions. After this, we will apply the classical
BGWs to present a novel construction of the Rajkundlia family of matrices.

In Chapter 5 we will study an extension of Hadamard matrices; in par-
ticular, we will consider those matrices with unimodular entries from the set

{±1±i
√
m√

m+1
, ±i±

√
m√

m+1
} such that the rows (columns) of the matrix are pairwise

orthogonal under the usual Hermitian inner product. We will extend par-
ticular constructions of these matrices as well as a morphism that will yield
quaternary complex Hadamard matrices, i.e. those Hadamard matrices with
entries from the set {±1,±i}.

In Chapter 6, the final chapter, we will apply BGW matrices to construct
parametrically new families of orthogonal designs. These matrices, along
with those constructed in the previous chapter, will give us new orders of
real and complex Hadamard matrices. At the conclusion of the chapter,
BGW matrices will be applied to reproduce several of the best known upper
bounds for the number of code words in binary constant weight codes.

In order to preserve the continuity of the work, citations of results will
be found at the end of each chapter in a “Notes” section.

The novel results compiled in this essay are:

i. Theorems 4.16, 5.5(ii), 5.7, 6.1, 6.2, 6.10, 6.12, 6.15, 6.17

ii. Propositions 4.19, 5.1(ii), 5.2(ii), 5.10, 5.11, 6.3, 6.5, 6.7, 6.8, 6.9

iii. Corollaries 5.3, 5.4, 5.6, 5.8, 5.9, 6.11, 6.13, 6.14, 6.16

An index of terms and an index of notations are available for the reader
to reference as they work their way through this essay.





Part I

Combinatorial Preliminaries
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Chapter 1

Balanced Incomplete Block
Designs

1.1 Definitions

Consider the following situation. From a group of individuals, one must
choose a number of committees, each of identical size, such that the appear-
ances of every individual among the various committees are equinumerous,
as are the appearances of each t individuals. More concretely we might ask
something such as: Given eight objects, can we arrange them in some num-
ber of groups of size four such that every triple appears together in a single
group and every singleton is replicated the same number of times?

We can answer this question in the affirmative with the following con-
figuration. Let the group of objects be represented by {a, b, c, d, e, f, g, h}.
Then the required groups may be given by

{a, b, e, f}, {c, d, g, h},
{a, c, e, g}, {b, d, f, h},
{a, d, e, h}, {b, c, f, g},
{a, b, c, d}, {e, f, g, h},
{a, b, g, h}, {c, d, e, f},
{a, c, f, h}, {b, d, e, g},
{a, d, f, g}, {b, c, e, h}.

Such a configuration is an example of a t-design. For the special case in
which t = 2, the configuration is termed a balanced incomplete block design.

In order to study these objects successfully and to place them in their
correct position relative to the other objects of design theory, we make use
of the so-called incidence structures defined thus.

Definition. An incidence structure is a triple S = (p,B, I), where p and
B are sets such that p ∩ B = ∅, and where I ⊆ p × B. The sets p, B,

3



CHAPTER 1. BALANCED INCOMPLETE BLOCK DESIGNS 4

and I are referred to as the points, blocks, and flags of the incidence struc-
ture, respectively. We write p I B and say “p is incident with B” whenever
(p,B) ∈ I.

To each incident structure S = (p,B, I) there are many associated struc-
tures. The dual of S is the triple S̄ = (p̄, B̄, Ī) defined as p̄ = B, B̄ = p,
and (B, p) ∈ Ī if and only if (p,B) ∈ I.

The complement of S is the triple S′ = (p′,B′, I ′) defined as p′ = p,
B′ = B, and I ′ = (p×B)− I.

Let q ⊆ p, and let F ⊆ B. Further define I∗ = (q × F) ∩ I. The triple
(q,F, I∗) is a substructure of S.

We will consider four important examples of substructures of S. In order
to accomplish this, we introduce the following notations. For each p ∈ p and
B ∈ B, define

(p) = {B | p I B}, and (B) = {p | B I p}

Further, we use [p] = |(p)| and [B] = |(B)|. The number [p] is the replication
number of p, and [B] is the cardinality of B. Fix p ∈ p and B ∈ B of S. We
define the following internal structures.

Sp =
(
p− {p}, (p),

(
(p− {p})× (p)

)
∩ I
)

, and

SB =
(

(B),B− {B},
(
(B)× (B− {B})

)
∩ I
)
.

Similarly, we define the following external structures.

Sp =
(
p− {p},B− (p),

(
(p− {p})× (B− (p))

)
∩ I
)

, and

SB =
(
p− (B),B− B,

(
(p− (B))× (B− {B})

)
∩ I
)
.

In the literature it is customary to refer to Sp and Sp as the point-derived and
point-residual substructures of S; while SB and SB are analogously referred
to as the block-derived and block-residual substructures of S.

If S is finite, i.e. there exist positive integers v and b such that p =
{p1, p2, . . . , pv} and B = {B1,B2, . . . ,Bb}, then we may associate to S the
v × b incidence matrix A = [aij ] defined as

aij =

{
1 if pi I Bj ; and

0 if pi AI Bj .
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Example 1.1. The preliminary example given at the start of this section
has the following incidence matrix.

1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 0 1 1 0 0 0 1 1 0 0 1 1
0 0 1 1 0 0 1 1 1 0 0 1 1 0
1 1 1 0 0 0 0 0 0 0 1 1 1 1
0 1 0 0 1 0 1 1 0 1 1 0 1 0
1 0 0 0 0 1 1 0 1 1 1 1 0 0
0 0 1 0 1 1 0 1 1 0 1 0 0 1


We now have the appropriate framework to precisely define 2-designs.

Definition. By a balanced incomlpete block design, we mean a finite inci-
dence structure S = (p,B, I) such that:

i. |p| = v and |B| = b, for some v ∈ Z+ and b ∈ Z+;

ii. there are r ∈ Z+ and k ∈ Z+ such that, for every p ∈ p and B ∈ B,
we have [p] = r and [B] = k; and

iii. there is a λ ∈ Z+ such that, for every 2-set {pi, pj} of p, we have that
[{pi, pj}] = λ.

We will use the notation BIBD(v, b, r, k, λ), and we will see that the parame-
ters are closely related; hence, it is customary to refer only to the paramters
(v, k, λ) unless more detail is required. If v = k (equiv. k = r), then we say
that the design is symmetric.

Example 1.2. We illustrate a BIBD(7, 3, 1) with point set {1, 2, 3, 4, 5, 6, 7}
below.

{1, 2, 3} {1, 4, 5}
{1, 6, 7} {2, 4, 6}
{2, 5, 7} {3, 4, 7}
{3, 5, 6}

This is the famous Fano plane.

Example 1.3. We note that our definition of BIBDs does not preclude
the instances in which the collection of blocks contains repeated blocks. To
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achieve a BIBD(7,3,2) we may extend the above BIBD(7,3,1) in the following
way.

{1, 2, 3} {1, 4, 5} {1, 6, 7}
{2, 4, 6} {2, 5, 7} {3, 4, 7}
{3, 5, 6} {1, 2, 3} {1, 4, 7}
{1, 5, 6} {2, 4, 5} {2, 6, 7}
{3, 4, 6} {3, 5, 7}

Note the block {1, 2, 3} appears twice in the block set.

Example 1.4. If |p| = v, and if B consists of all the k-subsets of p, then

the resulting structure is a BIBD
(
v, k,

(
v−2
k−2

))
.

The following section includes a more detailed discussion of the associa-
tions between the parameters of BIBDs.

1.2 Properties

We begin this section with the following general result.

Proposition 1.5. Let S = (p,B, I) be a finite incidence structure. Then∑
p∈p

[p] =
∑
B∈B

[B], (1.1)

and, after fixing a point q ∈ p,∑
p6=q

[{p, q}] =
∑
B I q

[B]− [q]. (1.2)

PROOF. To show (1.1), we count the number of flags in S. First, we count
the replications of points, and then we count the points incident with each
block.

To show (1.2), we fix q ∈ p and count flags (p,B) such that p 6= q and
B ∈ (p) ∩ (q). First, for each point p distinct from q, we count the blocks
that are incident with both p and q. Second, we count the points incident
with each block containing q. But we have then counted [q] flags of the form
(q,B) which must be deducted. Q.E.D.

Corollary 1.6. If S is a BIBD(v, b, r, k, λ), then (1.1) and (1.2) become

vr = bk, (1.3)

and
λ(v − 1) = r(k − 1). (1.4)
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From (1.3) and (1.4), it follows that

bk(k − 1) = λv(v − 1).

Equivalently, counting the number of ordered pairs appearing in the
design, including repititions, we find that

b

(
k

2

)
= λ

(
v

2

)
.

The following beautiful result was shown by Fischer in the first half of
the twentieth century. The importance of this result cannot be overstated
since it places fundamental restrictions on the structure of BIBDs that have
immediate consequences for the experimental designs modeled after them.
To illustrate the various methods employed in the study of combinatorial
designs, we will give two proofs of the proposition.

Theorem 1.7. [Fischer’s Inequality] For every BIBD(v, b, r, k, λ), it holds
that b ≥ v.

PROOF. (1st) We will prove the more general result known as The Non-
Uniform Fischer’s Inequality. Let S be a finite set of v elements, and let
B be a collection of b subsets of S such that |B1 ∩ B2| = λ > 0, for every
distinct B1 and B2 in B. We will show that b ≤ v, from which the result
follows by applying the non-uniform equality to the dual of the design.

Suppose first that there is a B ∈ B such that |B| = λ. It follows that
A ∩ B = B, for every A in B. Let B1 and B2 be distinct sets in B. Define
C = B1 ∩ B2 so that |C| = λ. Then B = B ∩ B1 ∩ B2 = B ∩ C. Since
|B| = |C| = λ, it follows that B = C. Therefore, in the usual way, form
the collection of mutually disjoint sets B∗ = {Bi − B | Bi ∈ B}. Then
b = |B∗| ≤ |S − B|+ 1 ≤ v.

We may now assume that |B| > λ for each B ∈ B. Let P be the space
of linear polynomials

∑v
i=1 aixi + a with rational coefficients. To each set

B ∈ B associate the linear polynomial fB =
∑

i∈B xi − λ. Then, for A ∈ B,
fB(A) = |A ∩ B| − λ.

We first consider the Q-independence of the set {fB}B∈B. Assume that∑
aBfB = 0, and fix A in B. Then

∑
aBfB(A) = aA(|A| − λ) = 0; whence,

aA = 0.
We next show that 1 6∈ span{fB}B∈B. Assume to the contrary, that

there are rationals {aB}B∈B such that
∑
aBfB = 1. Then

∑
aBfB(A) =

aA(|A| − λ) = 1. It follows that 1 =
∑

(|B| − λ)−1fB. In an analogous
manner, 1 =

∑
(|B| − λ)−1fB(∅) = −

∑
λ/(|B| − λ) < 0, a contradiction.

We have shown that span{fB}B∈B∪{1} is Q-independent. Hence, b+1 ≤
v + 1, and the result has been shown. Q.E.D.

PROOF. (2nd) The following is an application of various counting. Let S =
(p,B, I) be a BIBD(v, b, r, k, λ). Fix a block B, and let A represent any
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block distinct from B. For i ∈ {0, 1, . . . , k}, let ni be the number of blocks
A such that [A ∩ B] = i. It follows immeditaley that

k∑
i=0

ni = b− 1. (1.5)

Next, We count flags (p,A) such that p I A and p I B in two ways.
There are k points incident with B, and each of these is incident with r − 1
other blocks. Thus,

k∑
i=0

ini = k(r − 1). (1.6)

Finally, we count, in an analogous manner, triples (p1, p2,A) where
pi I A and pi I B, for i = 1 and 2, in two ways. We have

k∑
i=0

i(i− 1)ni = k(k − 1)(λ− 1). (1.7)

From (1.5), (1.6), and (1.7), we find that

k∑
i=0

i2ni = k(r − 1) + k(k − 1)(λ− 1).

Then

k∑
i=0

(x− i)2ni = (b− 1)x2 − 2k(r − 1)x+ (k(r − 1) + k(k − 1)(λ− 1)),

for an indeterminant x. Since the sum is non-negative, it follows that its
discriminant is non-positive. Initially, the discriminant is expressed in terms
of b, r, k, and λ. Using Corollary 1.6, it is possible to express it in terms of
v, k, and r as

(k − r)r(v − k)2 ≤ 0.

Therefore, r ≥ k (equiv. b ≥ v). Q.E.D.

Note that symmetric BIBDs are the extremal case of Fischer’s Inequality.
If a BIBD(v, k, λ) has constant block intersection size, it follows by Theorem
1.7 and its non-uniform counterpart that it must be symmetric. We will show
the converse.

Proposition 1.8. Let A be a (0,1)-matrix of order v. Then A is the inci-
dence matrix of a symmetric BIBD(v, k, λ) if and only if

AAt = AtA = (k − λ)I + λJ (1.8)
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PROOF. Towards the necessity, we note that A is the incidence matrix of a
BIBD(v, b, r, k, λ) if and only if AAt = (r−λ)I+λJ , Aj = rj, and Atj = kj,
where j is the column of all 1s.

To show the sufficiency, we first note that

det(AAt) = det2(A) = det((k − λ)I + λJ) = (k + λ(v − 1))(k − λ)v−1.

Then A is non-singular. Since Aj = kj, we have that A−1j = 1
k j. Conjugat-

ing (1.8) with A, we find

AtA = (k − λ)I +
λ

k
JA.

Comparing the diagonal entries ai, it follows that ai = k−λ+λai/k; whence,
ai = k is the column sum of A. This shows that A is the incidence matrix
of a symmetric BIBD(v, k, λ). Q.E.D.

Corollary 1.9. The dual of a design S is also a design if and only if S is a
symmetric design.

We conclude this section with a discussion of the parameters of the block-
residual and block-derived designs associated with a symmetric design.

Proposition 1.10. Let S = (p,B, I) be a symmetric BIBD(v, k, λ), and fix
a block B ∈ B. Then:

i. SB is a BIBD(v − k, v − 1, k, k − λ, λ) if λ ≥ 2, and

ii. SB is a BIBD(k, v − 1, k − 1, λ, λ− 1) if k − λ ≥ 2.

PROOF. To see the parametric values most easily, note that the associated
incidence matrix is permutation equivalent to[

0 A
j B

]
,

where A and B are the incidence matrices of the block-residual and block-
derived designs associated with the image of the block B under the previously
mentioned automorphism.

There only remains to be shown two nessecary conditions on the pa-
rameters, which, of course, are furnished by the assumptions λ ≥ 2 and
k − λ ≥ 2.

i. SB is a design if v − k ≥ k − λ. The contrary is equivalent to (k −
λ)(k−λ−1) ≤ 0. By our assumptions, this is a contradiction; whence,
we have the desired inequality.
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ii. In the case of SB, we need k ≥ λ. This quickly follows from the facts
v ≥ k and λ(v − 1) = k(k − 1).

We have shown that SB and SB are as claimed. Q.E.D.

Designs whose parameters satisfy (i) and (ii) of Proposition ?? will be
called quasi-residual and quasi-derived designs respectively. Those quasi-
residual and quasi-derived designs which are actually the residual and de-
rived designs of some larger symmetric design, will be called embeddable.

In the following chapters, we will refer to the block-residual and block-
derived designs simply as the residual and derived designs.

1.3 Resolvability

The definition of balanced incomplete block designs is sufficiently broad
to allow for many applications in fields like statistics and the theory of
error-correcting codes. However, in order to apply the constructions of this
treatise, we will usually require additional internal structure in the design;
indeed, this idea, applied in other directions in the following sections, will be
fundamental. In this section, we will focus on the resolvability of a design.

Definition. Let S = (p,B, I) be a BIBD(v, k, λ), and let C ⊂ B. Then:

i. If there is an αC ∈ Z+ such that each point in
⋃
B∈C(B) appears αC

times, we call C a resolution class of S. A partition of B into resolution
classes is called a resolution of S. If αC = α, for all C, we say that S
is α-resolvable.

ii. If C is a resolution class of S such that αC = 1, then C is a parallelism
of S. If there is a parition of B into parallelisms, then S is said to be
resolvable.

iii. A resolution of S is said to be affine if the cardinality of the intersec-
tion between any two distinct blocks of B is predicated solely on the
resolution classes of which they are a part.

Example 1.11.

i. Let q be a prime power and n ∈ Z+. It is known that BIBDs with
parameters (

qn,
q(qn − 1)

q − 1
,
qn − 1

q − 1
, qn−1,

qn−1 − 1

q − 1

)
exist for every such q and n. It is customary in the literature to refer
to such BIBDs as an n-dimensional affine geometry over Fq (see Notes
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for further discussion) and to denote this as AGn−1(n, q). We follow
custom and use this terminology and notation to refer to such designs.
It is well-known that affine geometries admit an affine resolution. The
following is a manifestation of AG1(2, 3) in which the resolution classes
are clearly manifest. 

1 0 0 1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0 1 0 0

0 0 1 0 0 1 0 0 1 1 0 0

1 0 0 0 1 0 0 0 1 0 1 0

0 1 0 0 0 1 1 0 0 0 1 0

0 0 1 1 0 0 0 1 0 0 1 0

1 0 0 0 0 1 0 1 0 0 0 1

0 1 0 1 0 0 0 0 1 0 0 1

0 0 1 0 1 0 1 0 0 0 0 1


This construction is typical of using the generalized Hadamard matri-
ces (see Chapter 3).

ii. The binary array given in Example 1.1 is an example of the so-called
Hadamard 3-designs, and is also seen to be resolvable. Hadamard
3-designs and affine geometries are the only known families of affine
resolvable balanced incomplete block designs.

Fischer’s Inequality (Theorem 1.7) may be improved for those designs
which admit a resolution. Moreover, this improved bound is tight in the
case that the resolution is affine; indeed, we will see that it completely
characterizes this case.

Theorem 1.12 (Bose’s Inequality). Let S = (p,B, I) be a BIBD(v, b, r, k, λ)
admitting a resolution R that partitions B. Then:

i. We have that b ≥ v + |R| − 1; and

ii. if the resolution is affine, then the bound on b is tight.

PROOF.

i. The proof closely follows that of Theorem 1.7. Let P be the space
of linear polynomials

∑b
i=1 aixi + a with rational coefficients. For

each point p ∈ p, and for each resolution class C ∈ R, define the
polynomials fp =

∑
B3p xB − λ and gC =

∑
B∈C xB − αC. Just as in

the proof of Theorem 1.7, it follows mutatis mutandis that the set
V = {fp}p∈p ∪ {gC}C∈R is Q-independent. Since this is a subspace of
P , we have that v + |R| ≤ b+ 1.
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ii. Assume that R is affine and has the ordering R = {C1,C2, . . . ,Ct}.
Let [A ∩ B] = mij , for A ∈ Ci and B ∈ Cj , and let V = span V. It
suffices to show that V = P , and this will be accomplished by showing
that each xB ∈ V . Define the polynomial

h =
∑

fp − k
∑

gCi =
∑

aBxB + a.

It follows that aB = [B] − k = 0; whence, h is constant. Since V is a
Q-independent set, we have h 6= 0.
For B ∈ Cj , j ∈ {1, 2, . . . , t}, consider now the polynomial

hB =
∑
p∈B

fp −
t∑
i=1

mijgCi =
∑

aBxB + a.

As above, aB = k −mjj . If k −mjj = 0, then, for any blocks A and
B in Cj , we have that [A ∩ B] = [A] = [B]. This is a contradiction
since [Cj ] ≥ 2, so there would be points not appearing in the resolution
class; whence, aB 6= 0. Similarily, if A 6= B and A ∈ Ci, then aA =
[A ∩ B] − mij = 0 so that hB = aBxB − a. The result now follows.
Q.E.D.

We complete our analysis of the extremal case of Bose’s inequality with
the following two result.

Lemma 1.13. Let S = (p,B, I) be a BIBD(v, b, r, k, λ) admitting a resolu-
tion R of pairwise disjoint resolution classes such that b = v + |R| − 1 (we
are not immediately assuming it covers B). Then R is a resolution.

PROOF. We have shown that each xB ∈ V . Expanding each xB by employing
the same methods used in the proof of the previous result, we obtain

xB =
1

r − λ
∑

fp +
∑

a
(B)
C gC. (1.9)

Assume there is some block A distinct from B and not in any resolution class
of R. Comparing the coefficient for xA on both sides of (1.9), it follows that

0 =
[A ∩ B]

r − λ
.

Therefore, (A) ∩ (B) = ∅. However, by Fischer’s inequality, we have that
b = v + |R| − 1 ≥ v; hence, |R| ≥ 1. We have derived our contradiction,
and the result is shown. Q.E.D.

Theorem 1.14. Let S = (p,B, I) be a BIBD(v, b, r, k, λ) admitting a reso-
lution R such that b = v + |R| − 1. Then:
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i. Any two distinct blocks of the same resolution class meet in k− r+ λ
points;

ii. for any resolution class C ∈ R, we have |C| = vαC/k;

iii. any two blocks from distinct resolution classes meet in k2/v points;
and

iv. R is an affine resolution.

PROOF.

i. Using the same reasoning in the proofs of previous results, we expand
each xB as

(r − λ)xB =
∑

fp −
∑

b
(B)
C gC. (1.10)

Following the standard approach of comparing coefficients, we find
that r − λ = [B] − bBC3B. Again comparing coefficients of xB for the

blocks A 6= B of the same resolution class, it follows [A∩B]−b(B)
C3A = 0;

and i. follows.

ii. We count flags (p,B) in two ways. First, each block is incident with k
points, and there are |C| blocks. Second, each point appears αC times
in C, and there are v points. Hence, k|C| = vαC.

iii. Let B ∈ Ci. Counting flags (p,A), where A ∈ Cj , i 6= j, and where
p ∈ (A) ∩ (B), we find kαCj = |Cj |[A ∩ B]. The left-hand side follows
since there are k points in (B), and each of these points appears αCj
times. The right-hand side follows after noting that the reasoning in

i. demonstrates that each block A ∈ Cj meets B in b
(B)
Cj

points, and

there are |Cj | blocks like A.

iv. The previous points show precisely that R is an affine resolution.
Q.E.D.

The previous result shows clearly that the dual incidence structure of
each resolution class C yields a BIBD(|C|, αC, k − r − λ). Moreover, it can
be shown that R is unique.

We will pursue further imposed structural properties in Chapter 3 when
we discuss the so-called intra-positional balance.

1.4 Notes

Combinatorial design theory has been developing at an exceptional rate
since its formal inception during the first half of the twentieth century. The
standard introduction to the field is presented in Beth, Jungnickel, and Lenz
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[BJL99a, BJL99b]; while a more elementary introduction is given in Stinson
[Sti04]. The monograph Ionin,Shrikhande [IS06] provides an in-depth ex-
amination into the theory of symmetric designs and has been indespensable
to the development of this treatise.

Incidence structures, as they apply to combinatorial designs, are studied
in the opening chapters of [BJL99a] and [IS06]. The notations and results
of §1.1 follow Dembowski [Dem97], which is the standard monograph on the
beautiful theory of finite geometries. For a more introductory invitation to
the subject of finite geometries, the reader is referred to Batten [Bat97].

The material in §1.2 closely follows the second chapters of [Dem97] and
[Bat97]. Fisher’s Inequality was shown in Ficher [Fis40]. The Non-Uniform
Fischer’s Inequality was first shown in Majumdar [Maj53]. Our first proof
the Non-Uniform Inequality is taken from [IS06], while the second proof is
taken from Cameron [Cam94]. The demonstration of the natures of the
derived and residual designs of a symmetric design are a recapitualtion of
those found in [Sti04].

The account of resolvability given in §1.3 is a special case of the more
general treatment given in [IS06]. In that work resolvability is addressed for
the structures known as (r, λ)-designs. These are similar to the balanced
incomplete block designs studied here, but the condition that the cardi-
nality of each block be the same is relaxed. The resolvability of balanced
incomplete block designs is thoroughly addressed in Shrikhande [Shr76].





Chapter 2

Weighing Matrices

2.1 Definitions

Imagine performing an experiment in which you must weigh four objects
using a balance with two pans. Let the error of the balance be denoted by
ε that has mean 0 and variance σ2. We will further denote the unknown
weights as ai and their measurments as yi, i ∈ {1, 2, 3, 4}. It follows that the
errors associated with each weight will be given by εi, i ∈ {1, 2, 3, 4}, respec-
tively. If we then weigh each object individually, the associated weighings
are then ai = yi + εi, each with variance σ2.

Suppose we use a different scheme instead: We weigh all four objects
at once, and we replicate these weighings with different configurations. We
need a way to optimize such a configuration, and one such optimal system
of weighings is given by the following.

a1 + a2 + a3 + a4 = y1 + ε1,

a1 − a2 + a3 − a4 = y2 + ε2,

a1 + a2 − a3 − a4 = y3 + ε3, and

a1 − a2 − a3 + a4 = y4 + ε4,

where the positive coefficients indicate being placed on the right pan, and
the negative coefficients indicate being placed on the left pan. Notice that
the coefficient matrix has pairwise orthogonal rows; hence, we may solve for
each ai. The estimate for each weight is then given by

âi =
y1 + y2 + y3 + y4

4
= ai −

ε1 + ε2 + ε3 + ε4

4
.

Since the variance of a sum of independent random variables is the sum
of the variances (see Notes at the end of this chapter), we have that the
variance for any one estimate is âi = σ2/4. This is an improvement by a
factor of four. We call the above configuration a weighing design.

16
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The success of this scheme is owing to the form of the coefficient matrix.
In this case the coefficient matrix is

W =


1 1 1 1
1 − 1 −
1 1 − −
1 − − 1

 .
Notice that since the rows are pairwise orthogonal, we have that WW t = 4I.
This motivates the following definition.

Definition. A weighing matrix W of order n and weight k is a (0,1,-1)-
matrix of order n such that WW t = kI. We will denote this as W (n, k).

From WW t = kI, it follows that W tW = kI and W−1 = k−1W t. Since
the non-zero entries of W are plus or minus unity, we have shown that there
are k non-zero entries in every row and column.

From the above discussion, we see that the optimum weighing designs are
those that admit a W (n, n). These are the important Hadamard matrices,
and they play fundamental roles in exciting fields such as the design of
experiments, performance of optical instruments, and error-correcting codes.

If there does not exist a W (n, n), then the next optimum weighing design
is given by a W (n, n− 1). We call the weighing matrices of this special case
a conference matrix .

Example 2.1. Consider

W1 =



0 1 1 1 1 1 1 1 1 1
1 0 − 1 − 1 − 1 − 1
1− 0 1 1 1 −− 1 −
1 1 1 0 −−− 1 1 −
1− 1 − 0 1 1 1 −−
1 1 1 − 1 0 −−− 1
1−−− 1 − 0 1 1 1
1 1 − 1 1 − 1 0 −−
1− 1 1 −− 1 − 0 1
1 1 −−− 1 1 − 1 0


and W2 =



0 1 0 1 1 0 0 −− 1 1 − 1
1 0 1 0 1 1 0 0 −− 1 1 −
− 1 0 1 0 1 1 0 0 −− 1 1
1 − 1 0 1 0 1 1 0 0 −− 1
1 1 − 1 0 1 0 1 1 0 0 −−
− 1 1 − 1 0 1 0 1 1 0 0 −
−− 1 1 − 1 0 1 0 1 1 0 0
0 −− 1 1 − 1 0 1 0 1 1 0
0 0 −− 1 1 − 1 0 1 0 1 1
1 0 0 −− 1 1 − 1 0 1 0 1
1 1 0 0 −− 1 1 − 1 0 1 0
0 1 1 0 0 −− 1 1 − 1 0 1
1 0 1 1 0 0 −− 1 1 − 1 0


Each of these are weighing matrices of weight nine; however, they are each
endowed with an additional parculiar structure: W1 is a symmetricW (10, 9),
and W2 is a circulant W (13, 9).

Properties of these matrices will be considered in the following section.
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2.2 Properties

The initial questions when working with a new object are first “Where do
they exist?” and second “What are the limitations on their existence?”. We
explored the second question for balanced incomplete block designs in §1.2.
This section will briefly explore these questions for weighing matrices. In
adressing these questions, we will begin with the special cases of Hadamard
matrices and conference matrices.

Hadamard matrices appear to have first come to attention in the works
of the English mathematician Sylvester during the nineteenth century. To
begin, he noticed the Hadamard matrix of order two given by

H =

[
1 1
1 −

]
.

The next step is to notice that if H is a Hadamard matrix of order n, then[
H H
H −H

]
is a Hadamard matrix of order 2n. This gives a family of symmetric Hadamard
matrices of order 2n.

Alternatively, let Sn be a matrix of order 2n, and index the rows and
columns by the elements of Zn2 . Finally, define Sn =

[
(−1)〈x,y〉

]
, where

〈x,y〉 is the binary inner product of the sequences x and y. The following
is a straightforward computation.

Proposition 2.2. The matrix Sn, as defined above, is Hadamard matrix of
order 2n.

PROOF. We need the following result:∑
x∈Zn2

(−1)〈x,y〉 = 2nδy0 ,

where y is some fixed element of Zn2 , and where δji = 1 if i = j and 0
otherwise. This follows from the fact that there are the same number of
even weighted binary sequences in Zn2 as there are odd weighted sequences.
Considering the inner product between any two rows of Sn indexed by x
and y, we find ∑

z∈Zn2

(−1)〈x,z〉(−1)〈y,z〉 =
∑
z∈Zn2

(−1)〈x+y,z〉

= 2nδyx .

This shows that Sn is as asserted. Q.E.D.
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Example 2.3. The first three iterations of Sylvester’s construction are

[
1 1
1−

]
,


1 1 1 1
1− 1 −
1 1 −−
1−− 1

 , and



1 1 1 1 1 1 1 1
1− 1 − 1 − 1 −
1 1 −− 1 1 −−
1−− 1 1 −− 1
1 1 1 1 −−−−
1− 1 −− 1 − 1
1 1 −−−− 1 1
1−− 1 − 1 1 −


.

There is a strong necessary parametric condition for the existence of a
Hadamard matrix which we show below.

Proposition 2.4. A W (n, n) exists only if n is 1, 2, or a multiple of 4.

PROOF. The cases that n is 1 or 2 are

[1], and

[
1 1
1 −

]
.

Otherwise, the first three rows are signed permutation equivalent to

1 . . . 1
1 . . . 1
1 . . . 1︸ ︷︷ ︸

a

1 . . . 1
1 . . . 1
− . . . −︸ ︷︷ ︸

b

1 . . . 1
− . . . −
1 . . . 1︸ ︷︷ ︸

c

1 . . . 1
− . . . −
− . . . −︸ ︷︷ ︸

d

This gives rise to the linear system

a+ b+ c+ d = n,

a+ b− c− d = 0,

a− b+ c− d = 0, and

a− b− c+ d = 0,

which has the solution a = b = c = d = n
4 . Q.E.D.

We will present a construction of conference matrices that is due to Paley.
Let q be an odd prime power, and let Fq be the finite field of order q. Define
the extended quadratic residue function as

χ(α) =


0 if α = 0;

1 if α is a square; and

−1 if α is not a square.

for α ∈ Fq. The following lemmata will be required.
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Lemma 2.5. Let q be an odd prime power. Then
∑

α∈Fq χ(α)χ(α+β) = −1,
whenever β 6= 0.

PROOF. Clearly, χ(0)χ(0 + β) = 0. By the field structure of Fq, if α 6= 0,
then there is a unique γ 6= 1 such that α + β = αγ. As α ranges over
the non-zero elements of Fq, it follows that γ ranges over all those elements
different from 1. Then∑

α∈Fq

χ(α)χ(α+ β) =
∑
α∈F×q

χ(α)2χ(γ)

=
∑
γ∈Fq

χ(γ)− χ(1)

= −1,

because
∑

γ∈Fq χ(γ). Q.E.D.

Let Fq = {α1 = 0, α2, . . . , αq}. Define the Paley matrix P = [pij ] as
pij = χ(αj − αi). Since χ(αj − αi) = χ(−1)χ(pi − pj), P is symmetric if
q ≡ 1 mod 4, and P is skew-symmetric if q ≡ −1 mod 4. The following is
an immediate consequence of the previous lemma.

Lemma 2.6. Let P be a Paley matrix defined as above. Then:

i. PP t = qI − J , and

ii. PJ = JP = 0.

Proposition 2.7. Let q be an odd prime power. If q ≡ 1 mod 4, then there
is a symmetric conference matrix of order q + 1. If q ≡ −1 mod 4, then
there is a skew-symmetric conference matrix of order q + 1.

PROOF. If q ≡ 1 mod 4, define

W1 =

[
0 jt

j P

]
;

while if q ≡ −1 mod 4, then define

W2 =

[
0 jt

−j P

]
.

In either case, W1 and W2 are seen to be the required matrices. Q.E.D.

Corollary 2.8. If q ≡ −1 mod 4 is a prime power, then there is a Hadamard
matrix of order q+1; while if q ≡ 1 mod 4, then there is a Hadamard matrix
of order 2(q + 1).
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PROOF. If A is a skew-symmetric (0,1,-1)-matrix of order n such that AAt =
(n − 1)I, then I + A is a Hadamard matrix. Now, apply the result. If
B is a symmetric (0,1,-1)-matrix with zero diagonal of order n such that
BBt = (n− 1)I, then [ I+B −I+B

−I+B −I−B ] is the required matrix. Q.E.D.

Clearly, a conference matrix of odd order cannot exist, but we have
shown the existence for orders that are 0 or 2 modulo 4. The next result
provides a particular characterization of conference matrices in these cases,
whenever they exist.

Theorem 2.9 (Delsarte, Goethals, Seidel). Let W be a W (n, n−1). Then:

i. If n ≡ 0 mod 4, then W is signed permutation equivalent to a skew-
symmetric conference matrix; and

ii. if n ≡ 2 mod 4, then W is signed permutation equivalent to a sym-
metric conference matrix.

We next give a few simple necessary conditions for the existence of more
general cases of weighing matrices.

Proposition 2.10. Let n be odd. There exists a W (n, k) only if:

i. k is a square, and

ii. (n− k)2 − (n− k) ≥ n− 1.

PROOF.

i. We have det(WW t) = det2(W ) = kn. Since n is odd, it follows that
k must be a square.

ii. Let ∗ denote the Hadamard product, that is, component-wise multi-
plication. Then A = W ∗W is (0,1)-matrix with k non-zero entries in
every row and column. Then AJ = AtJ = kJ so that AAtJ = k2J . If
the rows of W are denoted by r1, r2, . . . , rn, then, for any fixed j,∑

i 6=j
rir

t
j = k2 − k.

Moreover, the inner product between any distinct rows of A must be
even since W is a weighing matrix.
Define B = J − A. Then the inner product between any two rows is
odd so that

(n− k)2 − (n− k) ≥ n− 1,

which is what was to be shown. Q.E.D.
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Our last result in this section provides a characterization of the case in
which the order of the weighing matrix is congruent to 2 modulo 4.

Proposition 2.11. A W (n, k), for n ≡ 2 mod 4, exists only if k is the sum
of two squares.

PROOF. Let W = [wij ] be a W (n, k) such that n ≡ 2 mod 4. If n = 2, then
the existence of a W (2, k), for k = 1 or 2, is given by I2 and [ 1 1

1 − ]. We now
assume that n = 4w + 2 for some w ∈ Z+. Define

Lj =
n∑
i=1

wijxi,

where x1, . . . , xn are indeterminates. Then

L2
j =

n∑
i=1

n∑
h=1

wijwhjxixh

so that
n∑
j=1

L2
j =

n∑
j=1

n∑
i=1

n∑
h=1

wijwhjxixh

=
n∑
i=1

n∑
h=1

 n∑
j=1

wijwhj

xixh

= k

n∑
j=1

x2
j .

We now define x1, . . . , xn in terms of new indeterminates y1, . . . , yn. For
1 ≤ h ≤ n, let ȳh = (y4h−3, y4h−2, y4h−1, y4h) and x̄h = (x4h−3, x4h−2, x4h−1, x4h).
Let k = k2

1 + k2
2 + k2

3 + k2
4, where each ki ∈ Z+ ∪ {0}. Let

C =


k1 k2 k3 k4

k̄2 k1 k̄4 k3

k̄3 k4 k1 k̄2

k̄4 k̄3 k2 k1


so that CCt = kI4. Next, define ȳh = x̄hC, yn−1 = xn−1, and yn = xn. It
follows that

3∑
i=0

y2
4h−i = ȳhȳ

t
h

= x̄hCC
tx̄th

= k

3∑
i=0

x4h−i;



CHAPTER 2. WEIGHING MATRICES 23

whence,
n∑
i=1

L2
i =

n−2∑
i=1

y2
i + k(y2

n−1 + y2
n).

We have already that each Li is an integral sum of the xi’s. Since
C−1 = 1

kC
t, it follows that we can express each xi as a rational linear

combination of the yi’s. Then

L1 =
n∑
i=1

eiyi

for rational ei. If e1 6= 1, then let y1 = L1; while if e1 = 1, then let y1 = −L1.
Thus, y1 is expressed as a rational linear combination of y2, . . . , yn such that
L2

1 = y2
1. Whence,

n∑
i=2

L2
i =

n−2∑
i=2

y2
i + k(y2

n−1 + y2
n).

Continuing in this way, we see that

L2
n−1 + L2

n = k(yn−12 + y2
n).

Taking yn−1 = 1 and yn = 0, we see that k is expressible as a sum of rational
squares, namely, k = L2

n−1 + L2
n. But a non-negative integer is expressible

as a sum of two rational squares if and only if it is expressible as a sum of
two integral squares (see Notes at the end of this chapter). This is what we
wanted to prove. Q.E.D.

2.3 Related Configurations

In the previous section we used the idea of signed permutation equiva-
lence of weighing matrices. To make this idea more precise, let P and Q be
signed permutation matrices of order n. If W is a weighing matrix of order
n, then PWQ is a weighing matrix. This is seen by

(PWQ)(PWQ)t = PWQQtW tP t = PWW tP t = P (kI)P t = kI.

We will drop the modifier and simply refer to W and PWQ as equivalent.
From this we see that every W (n, n) is equivalent to one in which the first
row and column consist entirely of unity. These will be called normalized
Hadamard matrices and yield the following.

Proposition 2.12. The existence of a Hadamard matrix of order 4n is
equivalent to the existence of a symmetric BIBD(4n− 1, 2n− 1, n− 1).
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PROOF. Assume the existence of a Hadamard matrix of order 4n (say K),
and note that we may assume that it is normalized. Let H be the matrix
obtained by deleting the first row and column of K, and define A = 1

2(J+H).
Since K can be assumed to be normalized, we see that each row and column
(save the first of each) have 2n 1s and 2n -1s. Thus, we only need to comment
on the λ of the putative design. It follows from the proof of Proposition 2.4,
that each row has n− 1 1s in common; whence, λ = n− 1. The sufficiency
finally follows from Proposition 1.8.

The necessity is demonstrated by simply reversing the above reasoning.
Q.E.D.

The rows of the incidence matrices of any design form a set of binary
strings. Moreover, these binary strings have a constant number of non-
zero entries, and they disagree in the same number of positions. It is these
properties of designs that allow them to play a fundamental role in the
theory of error-correcting codes. We define codes thus.

Definition. Let A be a finite set of q letters that include the symbol 0. We
define the following.

i. A code C is a subset of the product An. It is customary to denote |C|
as M .

ii. If x ∈ C, and if y ∈ C, then the Hamming distance between x =
(x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) is given by d(x, y) = |{i | xi 6=
yi}|. The minimum distance of the code is d(C) = min{d(x,y) | x,y ∈
C)}. Note that the minimum distance forms a metric on the code.

iii. The Hamming weight of any codeword x = (x1, x2, . . . , xn) of C is
defined to be wt(x) = |{i | xi 6= 0}|. The minimum weight of the code
is wt(C) = min{wt(x) | x ∈ C}.

If C ⊂ An is a code with minimum distance d and |C| = M , where |A| =
q, then we will say that C is an (n,M, d)q-code. We will often drop the
subscript from the denotation.

In applications one must send strings of encoded information through a
“noisy” channel. It follows that the message received may not be the message
that was sent. The importance of the minimum distance in detecting and
correcting these errors is shown by the next result.

Proposition 2.13. Let C be an (n,M, d)-code. Then:

i. If d ≥ t+ 1, then C can detect up to t errors; and

ii. if d ≥ 2t+ 1, then C can correct up to t errors.
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PROOF.

i. If the codeword x was sent and then received with t or fewer errors, it
follows that the distance between the received word and x is less than
the minimum distance of the code; hence, we see that the received
word is not a codeword.

ii. Again, let x be the codeword that was transmitted, and let y be the
word that was received with t or fewer errors. Since d is a metric on C,
we find that, for any codeword z 6= x, d(z,y) ≥ t+1; for otherwise, by
the triangle inequality, we have that d(x, z) ≤ d(x,y) + d(y, z) ≤ 2t,
which is a contradiction. Therefore, x is the “closest” codeword to y,
so we decode y as x. Q.E.D.

It is not difficult to see that a BIBD(v, b, r, k, λ) gives a binary, constant
weight, equidistant (b, v, 2(r−λ))-code; while appending the binary comple-
ment to the code gives a (b, 2v, d)-code, where d ∈ {0, b, 2(r−λ), b−2(r−λ)}.

In practise one may have a given code length and minimum distance in
mind. The problem becomes, therefore, maximizing the number of code-
words given a length and minimum distance. Often this approach is under-
taken with particular cases or families of codes, but there are some general
bounds that can be obtained.

Theorem 2.14 (Hamming Bound). Let C be an (n,M, 2t+1)q-code. Then

M
t∑
i=0

(
n

i

)
(q − 1)i ≤ qn.

PROOF. Let x ∈ C. Define the closed sphere of radius r about x as S̄r(x) =
{y | d(x,y) ≤ r}. It follows by straightforward counting that

|S̄r(x)| =
r∑
i=0

(
n

i

)
(q − 1)i.

By ii. of Proposition 2.13, it follows that the spheres of radius t are disjoint.
Hence,

M
t∑
i=0

(
n

i

)
(q − 1)i ≤ |An| = qn,

which is what was to be shown. Q.E.D.

The Hamming Bound is tight, as the following example shows. Such
codes are called perfect .



CHAPTER 2. WEIGHING MATRICES 26

Example 2.15. We begin with the incidence matrix of a Hadamard BIBD(7,3,1),
and then append the binary complement, to construct the following perfect
binary (7,14,3)-code (transposed).

0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 0 1 1 0 0 0 1 1 0 0 1 1
0 0 1 1 0 0 1 1 1 0 0 1 1 0
1 1 1 0 0 0 0 0 0 0 1 1 1 1
0 1 0 0 1 0 1 1 0 1 1 0 1 0
1 0 0 0 0 1 1 0 1 1 1 1 0 0
0 0 1 0 1 1 0 1 1 0 1 0 0 1


In the case of binary codes, we can produce a further bound.

Theorem 2.16 (Plotkin Bound). For any binary (n,M, d)-code C, if n <
2d, then

M ≤ 2

⌊
d

2d− n

⌋
.

PROOF. We count the sum S =
∑

u∈C
∑

v∈C d(u,v) in two ways. First, we
note that there are M(M − 1) pairs such that d(u,v) ≥ d, and there are M
pairs such that d(u,v) = 0. Hence, S ≥M(M − 1)d.

Second, let A be the (0,1)-matrix whose rows are the codewords of C, and
let xi be the number of 1s in the ith column of A. Each column contributes
2xi(M − xi) to the sum; whence, S =

∑n
i=1 2xi(M − xi).

If M is even, then the sum is maximized precisely when 2xi = M .
Therefore, S ≤ nM2/2 so that M(M − 1)d ≤ nM2/2; that is, M(2d− n) ≤
2d. Since n < 2d, we have that

M ≤
⌊

2d

2d− n

⌋
= 2

⌊
d

2d− n

⌋
.

If M is odd, then the sum is maximized if 2xi = M + 1 or M − 1.
Therefore, S ≤ n(M2 − 1)/2, and we arrive at

M ≤ n

2n− d
=

2d

2d− n
− 1.

We finally obtain

M ≤
⌊

2d

2d− n

⌋
− 1 ≤ 2

⌊
d

2d− n

⌋
− 1.
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Corollary 2.17. If d is even and n ≤ 2d, then

M ≤ 2

⌊
d

2d− n

⌋
if the inequality is strict, and

M ≤ 4d if we have equality.

If, on the other hand, d is odd and n ≤ 2d+ 1, then

M ≤ 2

⌊
d+ 1

2d− n+ 1

⌋
if the inequality is strict, and

M ≤ 4(d+ 1) if we have equality.

The following example illustrates the Plotkin bound is tight; in fact, the
following code is developed from a Hadamard matrix.

Example 2.18. We show an (11,12,6)-code.

0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1
1 1 0 0 1 0 0 1 1 1 0
0 1 1 1 1 0 1 1 0 0 0
1 1 0 1 0 0 1 0 0 1 1
0 0 0 1 1 1 1 0 1 1 0
1 1 1 1 0 1 0 0 1 0 0
0 1 0 0 0 1 1 1 1 0 1
1 0 0 1 1 1 0 1 0 0 1
0 0 1 1 0 0 0 1 1 1 1
1 0 1 0 0 1 1 1 0 1 0
0 1 1 0 1 1 0 0 0 1 1


We conclude this section with the following application of Hadamard

matrices to codes meeting the Plotkin Bound. Essentially, the result states
that if enough Hadamard matrices exist, then there are perfect codes. For
brevity, we omit the proof.

Theorem 2.19 (Levenshtein’s Theorem). Let n and k be positive integers.
In each of the following cases we have equality in the Plotkin Bounds.

i. n is even, and there exists Hadamard matrices of orders 4k and 4k+4;

ii. n is odd, k is even, and there exists Hadamard matrices of orders 2k
and 4k + 4; and

iii. n and k are odd, and there exists Hadamard matrices of orders 4k and
2k + 2.
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2.4 Notes

The opening example was retrieved from MacWilliams, Sloane [MS77a];
though, Hotelling [Hot44] appears to be the first to note the applications of
the matrices of this chapter to weighing designs. The result that the variance
of the sum of independent random variables is the sum of the variances, is
shown in Sahoo [Sah13].

The study of weighing matrices appears to have began with the special
case of Hadamard matrices. Many of the initial contributors to the study
of these matrices include some very prominent names inluding Sylvester,
Hadamard, and Paley.

Sylvester [Syl67] appears to be the first individual to comment on Hadamard
matrices and discovered the family bearing his name while investigating or-
thogonal matrices and their applications generally. This particular family
is probably the most studied of any known, and it is still a fruitful area of
study today. See for example Mitrouli [Mit13].

Hadamard [Had93] independantely discovered Hadamard matrices while
studying analysis. In particular, he studied the question of maximal deter-
minants, and he began by showing the Vandermonde matrix has maximal
determinant when its entries are roots of unity. Then he considered the cases
of the unit circle and gave examples of orders 12 and 20, which turned out to
be Hadamard matrices. The question of maximal determinant was partially
answered by showing that, for the cases of matrices of orders n = 1, 2, and
4k, where k ∈ Z+, the matrix has maximal determinant if and only if it is a
Hadamard matrix (see [Cam94]). Proposition 2.4 is also due to Hadamard.

Proposition 2.7 and the subsequent results are due to the analyst Paley
[Pal33]. A comprehensive treatment of Paley’s beautiful results and their
consequences are found in Hall [Hal86].

While the theory of weighing matrices had been around for some time,
the fervor about the subject seems to have started during 1970s as a re-
sult of their broadening applications. Theorem 2.9 is found in Delsarte,
Goethals, Seidel [DGS71]. Proposition 2.10 is found in Seberry [Seb17],
and Proposition 2.11 is asked in the excersises of Stinson [Sti04] where the
proof is essentially a reproduction of the techniques used to prove the famed
Bruck-Ryser-Chowla Theorem (See [Hal86] and [Sti04] for expositions of this
result).

To show that a non-negative integer is the sum of two rational squares
if and only if it is the sum of two integral squares follows by an application
of Fermat’s two squares Theorem (see [Ros00]). It suffices to comment on
sufficiency. Fermat’s result shows that a natural number is the sum of two
integral squares if and only if it has no prime factor congrent to -1 modulo
4 that has an odd power. If for some positive integer n, we have that

n =
(
a
c

)2
+
(
b
c

)2
, then nc2 must have only even powers of those primes -1

modulo 4. Since an even integer subtracted from an odd integer is odd, it
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must be that n also has even powers of those primes -1 modulo 4. Therefore,
by Fermat’s result, n is also the sum of two integral squares.

Hadamard designs yield an important family of symmetric designs. Propo-
sition 2.12 can be found in most references on the subject. The version given
here is taken from [Hal86]. The application of Hadamard matrices to the the-
ory of error correcting codes is well documented, and exceptional references
are MacWilliam’s, Sloane [MS77b], [MS77a] and van Lint [vL99]. Horadam
[Hor07] provides an in-depth introduction of the applications of Hadamard
matrices to the theory of signal processing. Cameron, van Lint [CvL91] fur-
ther discusses the connections of designs, graphs, and codes. Levenshtein’s
Theorem 2.19 is shown in Levenshtein [Lev61].





Chapter 3

Generalizations

3.1 Generalizations of Weighing Matrices

To motivate the discussion of this section, we introduce the following
operation on complex matrices. Let W = [wij ] be a matrix over C, and let
z be the complex conjugate of z ∈ C. Define W by wij 7→ wij . Finally, the
Hermitian transpose is the composition defined by W ∗ ≡ (W )t.

We can now consistenly extend our definition of weighing matrices to
more general cases. In what follows, let T be those complex numbers of unit
modulus.

Definition. A unit weighing matrix W of order n and weight k is a square
matrix of order n over T ∪ {0} such that WW ∗ = kI. It is customary to
denote this as UW(n, k).

As before, we see that there are k non-zero entries in every row and
column. In the case that n = k, we call the matrix a unit Hadamard matrix
and denote this as UH(n).

Example 3.1. Let D = [dst] be defined as dst = ω(s−1)(t−1), for s, t ∈
{1, 2, . . . , 13}.

31
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Then

D =



1 1 1 1 1 1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ω11 ω12

1 ω2 ω4 ω6 ω8 ω10 ω12 ω ω3 ω5 ω7 ω9 ω11

1 ω3 ω6 ω9 ω12 ω2 ω5 ω8 ω11 ω ω4 ω7 ω10

1 ω4 ω8 ω12 ω3 ω7 ω11 ω2 ω6 ω10 ω ω5 ω9

1 ω5 ω10 ω2 ω7 ω12 ω4 ω9 ω ω6 ω11 ω3 ω8

1 ω6 ω12 ω5 ω11 ω4 ω10 ω3 ω9 ω2 ω8 ω ω7

1 ω7 ω ω8 ω2 ω9 ω3 ω10 ω4 ω11 ω5 ω12 ω6

1 ω8 ω3 ω11 ω6 ω ω9 ω4 ω12 ω7 ω2 ω10 ω5

1 ω9 ω5 ω ω10 ω6 ω2 ω11 ω7 ω3 ω12 ω8 ω4

1ω10 ω7 ω4 ω ω11 ω8 ω5 ω2 ω12 ω9 ω6 ω3

1ω11 ω9 ω7 ω5 ω3 ω ω12 ω10 ω8 ω6 ω4 ω2

1ω12 ω11 ω10 ω9 ω8 ω7 ω6 ω5 ω4 ω3 ω2 ω



,

where ω is a complex primitive complex 13th root of unity. It follows without
much difficulty that D is a UH(13).

The construction in the above example can be extended to every n in
the obvious manner (the so called Discrete Fourier Transforms). Thus, we
have that there is a unit Hadamard matrix of every order. The following
example evinces a proper unit weighing matrix.



CHAPTER 3. GENERALIZATIONS 33

Example 3.2. The following is a UW(57, 49).

1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2 3 5 4 3 1 1 0 0 6 2 3 0 6 4 1 5 6 3 4 4 4 6 2 5 5 2 4 2 6 5
6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2 3 5 4 3 1 1 0 0 6 2 3 0 6 4 1 5 6 3 4 4 4 6 2 5 5 2 4 2 6
1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2 3 5 4 3 1 1 0 0 6 2 3 0 6 4 1 5 6 3 4 4 4 6 2 5 5 2 4 2
3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2 3 5 4 3 1 1 0 0 6 2 3 0 6 4 1 5 6 3 4 4 4 6 2 5 5 2 4
5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2 3 5 4 3 1 1 0 0 6 2 3 0 6 4 1 5 6 3 4 4 4 6 2 5 5 2
3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2 3 5 4 3 1 1 0 0 6 2 3 0 6 4 1 5 6 3 4 4 4 6 2 5 5
6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2 3 5 4 3 1 1 0 0 6 2 3 0 6 4 1 5 6 3 4 4 4 6 2 5
6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2 3 5 4 3 1 1 0 0 6 2 3 0 6 4 1 5 6 3 4 4 4 6 2
3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2 3 5 4 3 1 1 0 0 6 2 3 0 6 4 1 5 6 3 4 4 4 6
1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2 3 5 4 3 1 1 0 0 6 2 3 0 6 4 1 5 6 3 4 4 4
5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2 3 5 4 3 1 1 0 0 6 2 3 0 6 4 1 5 6 3 4 4
5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2 3 5 4 3 1 1 0 0 6 2 3 0 6 4 1 5 6 3 4
5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2 3 5 4 3 1 1 0 0 6 2 3 0 6 4 1 5 6 3
4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2 3 5 4 3 1 1 0 0 6 2 3 0 6 4 1 5 6
1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2 3 5 4 3 1 1 0 0 6 2 3 0 6 4 1 5
6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2 3 5 4 3 1 1 0 0 6 2 3 0 6 4 1
2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2 3 5 4 3 1 1 0 0 6 2 3 0 6 4
5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2 3 5 4 3 1 1 0 0 6 2 3 0 6
1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2 3 5 4 3 1 1 0 0 6 2 3 0
0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2 3 5 4 3 1 1 0 0 6 2 3
4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2 3 5 4 3 1 1 0 0 6 2
3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2 3 5 4 3 1 1 0 0 6
1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2 3 5 4 3 1 1 0 0
0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2 3 5 4 3 1 1 0
0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2 3 5 4 3 1 1
2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2 3 5 4 3 1
2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2 3 5 4 3
4 2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2 3 5 4
5 4 2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2 3 5
6 5 4 2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2 3
4 6 5 4 2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2 2
3 4 6 5 4 2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6 2
3 3 4 6 5 4 2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2 6
1 3 3 4 6 5 4 2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2 2
3 1 3 3 4 6 5 4 2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0 2
3 3 1 3 3 4 6 5 4 2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6 0
0 3 3 1 3 3 4 6 5 4 2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0 6
1 0 3 3 1 3 3 4 6 5 4 2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6 0
0 1 0 3 3 1 3 3 4 6 5 4 2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4 6
1 0 1 0 3 3 1 3 3 4 6 5 4 2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5 4
5 1 0 1 0 3 3 1 3 3 4 6 5 4 2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5 5
6 5 1 0 1 0 3 3 1 3 3 4 6 5 4 2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6 5
6 6 5 1 0 1 0 3 3 1 3 3 4 6 5 4 2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0 6
1 6 6 5 1 0 1 0 3 3 1 3 3 4 6 5 4 2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2 0
0 1 6 6 5 1 0 1 0 3 3 1 3 3 4 6 5 4 2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5 2
3 0 1 6 6 5 1 0 1 0 3 3 1 3 3 4 6 5 4 2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0 5
6 3 0 1 6 6 5 1 0 1 0 3 3 1 3 3 4 6 5 4 2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4 0
0 6 3 0 1 6 6 5 1 0 1 0 3 3 1 3 3 4 6 5 4 2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5 4
5 0 6 3 0 1 6 6 5 1 0 1 0 3 3 1 3 3 4 6 5 4 2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2 5
6 5 0 6 3 0 1 6 6 5 1 0 1 0 3 3 1 3 3 4 6 5 4 2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5 2
3 6 5 0 6 3 0 1 6 6 5 1 0 1 0 3 3 1 3 3 4 6 5 4 2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6 5
6 3 6 5 0 6 3 0 1 6 6 5 1 0 1 0 3 3 1 3 3 4 6 5 4 2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5 6
1 6 3 6 5 0 6 3 0 1 6 6 5 1 0 1 0 3 3 1 3 3 4 6 5 4 2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0 5
6 1 6 3 6 5 0 6 3 0 1 6 6 5 1 0 1 0 3 3 1 3 3 4 6 5 4 2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6 0
0 6 1 6 3 6 5 0 6 3 0 1 6 6 5 1 0 1 0 3 3 1 3 3 4 6 5 4 2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2 6
1 0 6 1 6 3 6 5 0 6 3 0 1 6 6 5 1 0 1 0 3 3 1 3 3 4 6 5 4 2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1 2
3 1 0 6 1 6 3 6 5 0 6 3 0 1 6 6 5 1 0 1 0 3 3 1 3 3 4 6 5 4 2 2 0 0 1 3 4 0 1 5 2 6 1 4 5 5 5 1 3 6 6 3 5 3 1 6 1


where the non-zero entries are the logarithms of a primitive complex 6th

root of unity.

The above two examples are part of an important subclass of unit weigh-
ing matrices, namely, the so-called Butson weighing matrices. The non-zero
entries of these matrices are restricted to come from some group of primi-
tive complex roots of unity. A Butson weighing matrix of order n, weight
k, over the primitive pth roots of unity is denoted by BW(n, k; p). Hence,
the UW(57,49) above is a BH(57,49;6). We again distinguish the case that
n = k by calling them Butson Hadamard matrices, and we denote this as
BH(n, p). Thus, the above UH(13) is, in fact, a BH(13,13).
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If we further restrict ourselves to the case of primitive fourth roots of
unity, we call the matrix a quaternary complex weighing matrix (respectively,
quaternary complex Hadamard matrix ). It is customary to denote this as
CW(n, k) (respectively, CH(n)) for a quaternary complex weighing matrix
of order n and weight k.

Example 3.3. The following is a CW(31,25).

j j 0 0 1 j i i j − 0 j i 0 i 0 1 i − 0 1 1 1 j − j i j 1 1 i
1 j j 0 0 1 j i i j − 0 j i 0 i 0 1 i − 0 1 1 1 j − j i j 1 1
j 1 j j 0 0 1 j i i j − 0 j i 0 i 0 1 i − 0 1 1 1 j − j i j 1
j j 1 j j 0 0 1 j i i j − 0 j i 0 i 0 1 i − 0 1 1 1 j − j i j
− j j 1 j j 0 0 1 j i i j − 0 j i 0 i 0 1 i − 0 1 1 1 j − j i
1 − j j 1 j j 0 0 1 j i i j − 0 j i 0 i 0 1 i − 0 1 1 1 j − j
− 1 − j j 1 j j 0 0 1 j i i j − 0 j i 0 i 0 1 i − 0 1 1 1 j −
i − 1 − j j 1 j j 0 0 1 j i i j − 0 j i 0 i 0 1 i − 0 1 1 1 j
− i − 1 − j j 1 j j 0 0 1 j i i j − 0 j i 0 i 0 1 i − 0 1 1 1
j − i − 1 − j j 1 j j 0 0 1 j i i j − 0 j i 0 i 0 1 i − 0 1 1
j j − i − 1 − j j 1 j j 0 0 1 j i i j − 0 j i 0 i 0 1 i − 0 1
j j j − i − 1 − j j 1 j j 0 0 1 j i i j − 0 j i 0 i 0 1 i − 0
0 j j j − i − 1 − j j 1 j j 0 0 1 j i i j − 0 j i 0 i 0 1 i −
i 0 j j j − i − 1 − j j 1 j j 0 0 1 j i i j − 0 j i 0 i 0 1 i
1 i 0 j j j − i − 1 − j j 1 j j 0 0 1 j i i j − 0 j i 0 i 0 1
j 1 i 0 j j j − i − 1 − j j 1 j j 0 0 1 j i i j − 0 j i 0 i 0
0 j 1 i 0 j j j − i − 1 − j j 1 j j 0 0 1 j i i j − 0 j i 0 i
1 0 j 1 i 0 j j j − i − 1 − j j 1 j j 0 0 1 j i i j − 0 j i 0
0 1 0 j 1 i 0 j j j − i − 1 − j j 1 j j 0 0 1 j i i j − 0 j i
1 0 1 0 j 1 i 0 j j j − i − 1 − j j 1 j j 0 0 1 j i i j − 0 j
− 1 0 1 0 j 1 i 0 j j j − i − 1 − j j 1 j j 0 0 1 j i i j − 0
0 − 1 0 1 0 j 1 i 0 j j j − i − 1 − j j 1 j j 0 0 1 j i i j −
i 0 − 1 0 1 0 j 1 i 0 j j j − i − 1 − j j 1 j j 0 0 1 j i i j
− i 0 − 1 0 1 0 j 1 i 0 j j j − i − 1 − j j 1 j j 0 0 1 j i i
1 − i 0 − 1 0 1 0 j 1 i 0 j j j − i − 1 − j j 1 j j 0 0 1 j i
1 1 − i 0 − 1 0 1 0 j 1 i 0 j j j − i − 1 − j j 1 j j 0 0 1 j
− 1 1 − i 0 − 1 0 1 0 j 1 i 0 j j j − i − 1 − j j 1 j j 0 0 1
j − 1 1 − i 0 − 1 0 1 0 j 1 i 0 j j j − i − 1 − j j 1 j j 0 0
0 j − 1 1 − i 0 − 1 0 1 0 j 1 i 0 j j j − i − 1 − j j 1 j j 0
0 0 j − 1 1 − i 0 − 1 0 1 0 j 1 i 0 j j j − i − 1 − j j 1 j j
− 0 0 j − 1 1 − i 0 − 1 0 1 0 j 1 i 0 j j j − i − 1 − j j 1 j


where j = −i.

To motivate the results of the next section, we need to be more general.
To this end, we remind the reader about the group ring. If G is a group
and R a ring, we define R[G] to be the collection of all formal sums

∑
agg,

where ag ∈ R and g ∈ G, such that all but a finite number of the ags are
0. To form R[G] into a ring, one simply defines sums and products in the
usual way. We will always make the identification G =

∑
g∈G g.

We also need to extend the Hermitian transpose to matrices over R[G].
Let λ be any involution over G. We naturally extend this to R[G] by
λ(
∑
agg) =

∑
agλ(g). If W = [wij ] is a matrix over R[G], define W λ
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by wij 7→ λ(wij). Then the Hermitian transpose becomes W ∗ ≡ (W λ)t. In
what follows, we will take λ to be the inversion operation on G.

In every case involving real, Butson, and quaternary complex weigh-
ing matrices, we notice that the non-zero elements come from some finite
signable group G; that is, a group with a unique subgroup of order 2. More-
over, if

∑
uiv̄i is the usual the Hermitian inner product between any two

distinct vectors v = (vi)
n
i=1 and u = (ui)

n
i=1 in Cn, then we see that the

Hermitian product between distinct rows vanishes because it evaluates to∑
g∈G ag(g − g) = 0, for some integral constants ag. For the above two

examples, we actually have that the product becomes a
∑

g∈G g = 0 (note
that a may be different when considering the product of different pairs of
rows). This motivates the following definition.

Definition. Let G be a finite group. A generalized weighing matrix W of
order n and weight k over the group G is a square matrix of order n with
monomial entries from Z[G] such that WW ∗ ≡ kI modulo the ideal ZG.
This is denoted as GW (n, k;G).

Example 3.4. The following is a GW(12, 9;Z3).

0 ω 1 ω 1 1 0 1 0 1 ω2 ω2

1 ω ω2 0 0 ω 1 1 1 ω2 1 0
1 1 0 ω2 1 0 ω2 0 ω 1 1 ω
ω2 0 1 1 1 ω 1 ω2 ω 0 0 1
0 ω2 1 1 ω2 1 0 1 0 ω 1 ω
1 ω2 ω 0 0 1 1 ω2 1 1 ω 0
1 0 ω2 1 1 1 ω ω ω2 0 0 1
ω2 1 0 1 ω 0 ω 0 1 1 1 ω2

0 1 1 ω2 ω 1 0 1 0 ω2 ω 1
1 1 1 0 0 ω2 1 ω 1 ω ω2 0
ω 1 0 ω ω2 0 1 0 ω2 1 1 1


We close this section by generalizing real weighing matrices in a different

direction. Up to this point we have only considered those matrices over
some explicit group. We now consider the case when the entries are simply
commuting indeterminants.

Definition. Let {xi}si=1 be real commuting indeterminants. An orthogonal
design X is a square matrix of order n with entries from {0} ∪ {±xi}si=1

such that XXt = (
∑
six

2
i )I. We denote this as OD(n; s1, s2, . . . , sα), and

we say that X is of type (s1, s2, . . . , sα).
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We say that two matrices are amicable if ABt − BAt = 0; while they
are anti-amicable if ABt +BAt = 0. From the definition it is clear that we
can express an OD(n; s1, s2, . . . , sα) (say X) as X =

∑
xiWi, where each

Wi is a (0,1,-1)-matrix. Since XXt = (
∑
six

2
i )I, we have that, for i 6= j,

Wi ∗Wj = 0, WiW
t
j + WjW

t
i = 0, and WiW

t
i = siI. Thus, the existence

of an OD(n; s1, s2, . . . , sα) is equivalent to the existence of a set {Wi}αi=1

(0,1,-1)-matrices satisfying the above properties.
The decomposition of an OD into a linear sum of weighing matrices is

related to the early work of the analyst Radon. A Hurwitz-Radon family of
order n is a set {Wi}si=1 of square, skew-symmetric, mutually anti-amicable,
orthogonal matrices of the same order n. Let n = 2ab, where b is odd.
Let a = 4c + d, for 0 ≤ d < 4. Define the Radon arithmetic function as
ρ(n) = 8c+ 2d. Radon’s main result is shown below.

Theorem 3.5. A Hurwitz-Radon family of order n can have at most ρ(n)
members; moreover, there is a family having ρ(n)− 1 members.

We have the following important result in the theory of orthogonal de-
signs.

Theorem 3.6. For any positive integer n, there can be at most ρ(n) inde-
terminants in any OD of order n; moreover, this bound is tight for every
n.

The properties of amicability and anti-amicablility become fundamental
in this context as well. If we have two amicable ODs X and Y of order
n and of types (s1, s2, . . . , sα) and (t1, t2, . . . , tβ), respectively, then we say
that the ordered pair (X,Y ) is an amicable design, and we write (X,Y ) is
an AOD(n; (s1, s2, . . . , sα); (t1, t2, . . . , tβ)). Similarly, if X and Y are anti-
amicable, then say that (X,Y ) is an anti-amicable design, and we write
AAOD(n; (s1, s2, . . . , sα); (t1, t2, . . . , tβ)).

Example 3.7. The following pairs (Xi, Yi) constitute an AOD(2; (1, 1); (1, 1))
and an AOD(4; (1, 1, 2); (1, 1, 2)).

X1 =

[
a b
b̄ a

]
Y1 =

[
c d
d c̄

]

X2 =


a b c c
b̄ a c c̄
c c ā b̄
c c̄ b ā

 Y2 =


d e f f
e d̄ f f̄
f̄ f e d
f̄ f d ē


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The example (X1, Y1) above will play a fundamental role in later chap-
ters. Amicable designs have immediate constructive applications. The fol-
lowing result is instructive, and the proof follows by replacing the variables
of a design with an amicable pair. The rest is a straightforward computation.

Proposition 3.8. If there exists an OD(n; s1, s2), then:

i. there is an OD(2n; s1, s2, s2, s2), and

ii. there is an OD(4n; s1, s1, 2s1, s2, s2, 2s2).

We note that many of the above ideas can be obtained in a more gen-
eral setting. By letting the coefficients of the non-zero entries of a de-
sign X instead come from the set {±1,±i}, such that XX∗ = (

∑
six

2
i )I,

then we say that X is a complex orthogonal design. This is denoted as
COD(n; s1, s2, . . . , sα).

We now have the appropriate framework to delve into the idea of intra-
positional balance in the next section.

3.2 Intra-Positional Balance

Consider W2 of Example 2.1. If we take A = W2 ∗W2, then we find that
A is the incidence matrix of a BIBD(13,9,6). In the notation of the previous
section, we see that the inner product between distinct rows evaluates to

6
|G|G, where G = 〈−1〉, the cyclic group of order 2 generated by -1. Similarly,
the matrices of Examples 3.2 and 3.3 yield the incidence matrices of BIBDs
when the non-zero entries are replaced with unity; however, the matrix of
Example 3.4 does not.

Balanced incomplete block designs can best be described as having a
kind of inter-positional balance. The examples of group matrices stated
above are also balanced with respect to the group itself. This can best be
thought of as a kind of intra-positional balance. The latter clearly imlpies
the former, but the former does not by itself imply the latter. To capture
this idea, we have the following definition.

Definition. Let G be a finite group. A generalized Bhaskar Rao design X
is a v × b (0,G)-matrix such that every column contains k non-zero entries
and XX∗ = rI + λ

|G|G(J − I), where λ is some multiple of |G|. We denote

this as GBRD(v, b, r, k, λ;G). A quasi-GBRD is defined in the same way
except that XX∗ = rI + ( λ

|G|G − 1G)(J − I), and is denoted by quasi-

GBRD(v, b, r, k, λ;G).

From the definition, we see that every (quasi-)GBRD(v, b, r, k, λ;G) gives
a BIBD(v, b, r, k, λ) upon replacing the non-zero entries with unity; hence,
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by Fischer’s Inequality (Theorem 1.7), we see that v ≤ b. The extremal case
is again distinguished, and we call these balanced group matrices balanced
generalized weighing matrices. These are denoted by BGW(v, k, λ;G). The
case that k = v − 1 is called a generalized conference matrix. Finally, in
the case that v = k, we call these generalized Hadamard matrices, and we
denote these as GH(G,λ).

Example 3.9. A GBRD(5, 3, 3;Z3).
1 1 1 1 1 1 0 0 0 0
1 ω ω2 0 0 0 1 1 1 0
1 0 0 ω2 ω 0 ω ω2 0 1
0 1 0 ω2 0 ω 1 0 ω ω
0 0 1 0 ω2 ω 0 ω2 1 ω2


In what follows, we shall be primarily concerned with the extremal cases

of Fischer’s Inequality, that is, BGW matrices. If P and Q are monomial
(0,G)-matrices, and if W is a BGW over G, then we say that PWQ and W
are monomially equivalent . The following proposition justifies this notion.

Proposition 3.10. If W is a BGW(v, k, λ;G), and if P and Q are monomial
(0, G)-matrices, then PWQ is a BGW(v, k, λ;G).

PROOF. Let W = [wij ], and let g ∈ G. We have that (wijg)(whjg)−1 =
wijw

−1
hj ; whence WQ is a BGW(v, k, λ;G). Further, (gwij)(gwhj)

−1 =

g(wijw
−1
hj )g−1. Since conjugation by g is an automorphism of G, it fol-

lows that every element of G appears λ/|G| times in the Hermitian inner
product between any two distinct rows of PW . We have shown that PWQ
is as desired. Q.E.D.

We next consider the invariance of the property of being a BGW under
homomorphic images.

Proposition 3.11. Let G and H be finite groups, and let ϕ : Z[G] →
Z[H] be a ring homomorphism such that ϕ(G) = H. If W = [wij ] is a
BGW(v, k, λ;G), then Wϕ = [ϕ(wij)] is a BGW(v, k, λ;H).

PROOF. It is sufficient to note that ϕ(wij)ϕ(whj)
−1 = ϕ(wijw

−1
hj ); whence,

each element of H appears λ/|H| times in the hermitian inner product be-
tween distinct rows of Wϕ. Q.E.D.

Corollary 3.12. LetW = [wij ] be a BGW(v, k, λ;G). Then
∑v

i=1wijw
−1
ih =∑

g∈G agg, where
∑
ag = λ.
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Proposition 3.13. LetW be a BGW(v, k, λ;G). ThenW ∗ is a BGW(v, k, λ;G).

PROOF. Note that WW ∗ ≡ kI modulo the ideal ZG. Hence, if ϕ : Z[G]→
Z[G]/ZG is the natural ring homomorphism, we have that Wϕ(Wϕ)∗ = kI.
Therefore, (Wϕ)−1 = 1

k (Wϕ)∗. We then have (Wϕ)∗Wϕ = kI; whence,
W ∗W = kI+U , where U = [uijG] is a matrix over ZG. Corollary 3.12 then
implies that uii = 0 and that uij = λ/|G|, whenever i 6= j. It follows that
U = λ(J − I)/|G|, and we have shown that W ∗ is as required. Q.E.D.

Corollary 3.14. Let W be a BGW(v, k, λ;G), where G is a finite abelian
group. Then Wµ and W t are also BGW(v, k, λ;G)s, where µ is the group
inversion operation of G.

PROOF. Since G is abelian, the inversion operation is a group automorphism;
whence, Wµ is a BGW(v, k, λ;G) by Proposition 3.11. Further, (Wµ)∗ =
W t, so W t is a BGW(v, k, λ;G) by the result. Q.E.D.

BGWs have proven to be elusive; there are only a few known infinite
families of these matrices. In the following section, we will construct an
important family of BGW matrices, the so-called classical parameter BGW
matrices.

We close this section by extending the definitions of residual and derived
designs of a symmetric BIBD to BGW matrices.

Definition. Let W be a BGW(v, k, λ;G), for some finite group G. We may
assume that W has the form [

0 A
j B

]
.

Note that A is a GBRD(v − k, v − 1, k, k − λ, λ;G) and B is a quasi-
GBRD(k, v− 1, k− 1, λ, λ− 1;G). We call A the residual part of W , and we
call B the derived part of W . Any GBRD whose parameters satisfy r = k+λ
is call a quasi-residual GBRD, and any quasi-GBRD whose parameters sat-
isfy k = λ+ 1 is call a quasi-derived GBRD.

3.3 Classical Parameter BGW Matrices

We recall the definitions and notations of §2.3 regarding codes. If the
alphabet A is a field, then we may regard An as a linear space. If C is a
subspace of An, then we say that C is a linear [n, k]q-code, where k = dim C,
and where q = |A|. For the remainder of this work, we will take A ≡ Fq.

By a generator matrix G of a linear [n, k]q-code C, we mean a k × n
matrix over Fq, with linearly independent rows, such that C is the space of
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all linear combinations of the rows of G, i.e. the rows of G form a basis for
the code C. We introduce the following important linear code.

Definition. Let G be the matrix whose columns are distinct representatives
of all one-dimensional subspaces of the linear space Fnq . The simplex code
Sn(q) is the linear [v, n]q-code whose generator matrix is G, where v =
(qn − 1)/(q − 1).

The following result is a characterization of simplex codes.

Theorem 3.15. Let q be a prime power, and let v = (qn−1)/(q−1), where
n ∈ Z≥2. A linear [v, n]q-code C is an Sn(q) if and only if wt(x) = qn−1 for
every non-zero codeword x ∈ C.

PROOF. We first lay down some preliminaries. Let {xi}vi=1 be representa-
tives of the distinct one-dimensional subspaces of C, and let these be the
consecutive rows of the matrix Γ = [γij ]. We may assume that the first n
rows of Γ form the generator matrix G of C. Take {yi}vi=1 to be the columns
of Γ, and let Y = span{yi}vi=1. It follows that rank Γ = dim C = dim Y .
Finally, let Ui be the hyperplane of Fvq consisting of the strings with 0 for

the ith components.
To begin, assume that C is an Sn(q). Then no two of the columns of

G are proportional; hence, no two columns of Γ are proportional. Note
that Y 6⊆ Ui, for any i, for otherwise the string xi = 0, contradicting the
construction of Γ. It follows that dim Y ∩ Ui = n − 1 so that Y ∩ Ui
has (qn−1 − 1)/(q − 1) distinct one-dimensional subspaces. Then wt(xi) =
v − (qn−1 − 1)/(q − 1) = qn−1.

On the other hand, assume that C is a linear [v, n]q-code such that
wt(x) = qn−1 for every non-zero codeword x ∈ C. Since C is linear,
d(x1,x2) = wt(x1 − x2) = qn−1 whenever x1 6= x2. For i 6= j, if Y ∩ Ui =
Y ∩ Uj , then xi and xj have zeros in the same (qn−1 − 1)/(q − 1) po-
sitions. If γik 6= 0, then γjk 6= 0; and γik = αγjk, for some α ∈ Fq.
Clearly, then, d(xi, αxj) ≤ qn−1 − 1, which contradicts our assumption.
Thus, Y ∩ Ui 6= Y ∩ Uj , and dim Y ∩ Ui ∩ Uj = n − 2. Therefore, there
are (qn−2 − 1)/(q − 1) positions in which xi and xj both have zeros. If we,
for a moment, consider the non-zero entries to be unity, then we have the
following configuration (after suitably permuting the columns)

qn−1
q−1︷ ︸︸ ︷

1 . . . 1
1 . . . 1︸ ︷︷ ︸

x

1 . . . 1
0 . . . 0︸ ︷︷ ︸
qn−1−1
q−1

0 . . . 0
1 . . . 1︸ ︷︷ ︸
qn−1−1
q−1

0 . . . 0
0 . . . 0︸ ︷︷ ︸
qn−2−1
q−1

,
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where x = (qn − 1)/(q − 1) − 2(qn−1 − 1)/(q − 1) + (qn−2 − 1)/(q − 1) =
qn−1−qn−2; whence, we have a symmetric design. Therefore, no two columns
of Γ are poportional.

To conclude the proof, it suffices to show that no two rows of G are
proportional. To the contrary, let {zi}vi=1 be the columns of G, and suppose
that zj = αzk, for some α ∈ Fq. Hence, γij = αγik, for i ≤ n. Since the
{xi}ni=1 form a basis of C, we have that xl =

∑n
i=1 βixi, for some βi ∈ Fq.

Then γlj =
∑n

i=1 βiγij = α
∑n

i=1 βiγik = αγlk. But then yj = αyk, contrary
to our assumptions. Therefore, no two rows of Γ are proportional so that no
two rows of G are proportional. Therefore, C is a simplex code as desired.
Q.E.D.

We are now ready to present the most prominent family of BGW matri-
ces.

Theorem 3.16. Let q be a prime power, and let n ∈ Z+. If G is a cyclic
group such that |G| divides q− 1, then there is a BGW over G with param-
eters (

qn+1 − 1

q − 1
, qn, qn − qn−1

)
. (3.1)

PROOF. Let W = [wij ] be the matrix whose rows consist of representatives
from the one-dimensional subspaces of Sn+1(q). Then W has order v =
(qn+1 − 1)/(q − 1). From Theorem 3.15, it follows that W has qn non-zero
entries in every row and column. By the same result, we have that the
multiset Pij = {wikw−1

jk | 1 ≤ k ≤ v} has qn − qn−1 entries. To complete
the proof, we show that every element of the multiplicative subgroup of the
field Fq appears precisely qn−1 times in Pij . Indeed, assume that there is
some α ∈ Fq which appears more than qn−1 times in Pij . Then there are
more than (qn−1− 1)/(q− 1) + qn−1 indices k for which wik = αwjk. In this
case, then,

wt(xi − αxj) = d(xi, αxj) =
qn+1 − 1

q − 1
− qn−1 − 1

q − 1
− qn−1 = qn,

which contradicts our assumptions; whence, each element of F×q appears at
most qn−1 times in Pij . Now, since |Pij | = qn−1(q− 1), it is clear that there
are at most qn−1 replications of element of F×q . The remainder follows from
Proposition 3.11. Q.E.D.

It is often helpful to have BGW matrices with additional structure. To
this end, we introduce the ω-circulant matrices. By this, we mean a square
matrix A = [aij ] of order n over the finite cyclic group 〈ω〉 such that

aij =

{
ai−1,j−1 if i, j > 1, and

ωai−1,n if i > 1 and j = 1.
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It can be shown that an ω-circulant BGW matrix with parameters (3.1)
exists for every prime power q and positive integer n. To be explicit, let N
and Tr be the usual norm and trace functions Fqn+1 → Fq. Let β be any
primitive element of Fqn+1 , and take ω = [N(β)]−1. Let W be the ω-circulant
matrix with first row (Trβ0, T rβ, . . . , T rβv−1), where v = (qn+1−1)/(q−1).
It can be shown that W is the required matrix. The proof of this result
requires a detailed discussion of linear feedback shift register sequences and
would take us too far afield. To reference this result, we record it below.

Theorem 3.17. Let q be a prime power, n ∈ Z+. If G = 〈ω−1〉 is a cyclic
group whose order divides q − 1, then there is an ω-circulant BGW matrix
over G with parameters (3.1).

The matrices given in Examples 3.2 and 3.3 are ω-circulant BGWs where
ω is given by −1 and −i, respectively. The base case of the classical
parameters, that is, the generalized conference matrices with parameters
(q + 1, q, q − 1), deserve explicit description. First, we extend the notion of
a skew-symmetric matrix. Let G be a finite abelian group with a unique
normal subgroup 〈ε〉 of order two, and let W be a (0, G)-matrix. We say
that W is skew-symmetric whenever W t = εW .

Proposition 3.18. Let q be a prime power, and let G be a cyclic group
whose order n divides q − 1. Then there exists a generalized conference
matrix W of order q + 1 over G. Moreover, if q(q − 1)/n is even, then W is
symmetric; while if (q− 1)/n and n ≡ 0 mod 2, then W is skew-symmetric.

PROOF. This is essentially a generalization of Paley’s construction 2.7. Let
Fq = {α1 = 0, . . . , αq}, and let C = [cij ] be the matrix defined by cij =
αj − αi. Then

W = [wij ] =

[
0 1
−1 C

]
is seen to be a skew-symmetric generalized conference matrix over F×q when-
ever q is odd, while W is symmetric if the field has characteristic 2. Note
that the non-zero elements of W can be represented by βj , for some prim-
itive element β of Fq and j ∈ {0, 2, . . . , q − 2}. If 〈ω〉 = G, then we apply
the epimorphism βj 7→ ωj mod n. The rest follows from Proposition 3.11.
Q.E.D.

We close this section with a result on Generalized Hadamard matrices.

Proposition 3.19. For every prime power q, there exists a GH(F+
q , 1).

PROOF. Let Fq = {α1, α2, . . . , αq}, and let H = [hij ] be the matrix defined
by hij = αiαj . Since the multiset {αiαk − αjαk} is the group F+

q , we are
done. Q.E.D.
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3.4 Notes

Balanced generalized weighing matrices have been studied by many dif-
ferent authors, in many different contexts. The first person studying these
topics appears to have been Delsarte [Del68]. Generalized Hadamard matri-
ces were pursued by Drake in [Dra79]. Rajkundlia studied these structures
and BGWs in [Raj83]. Tonchev [Ton09] studied the conections of BGW
and GH matrices with self-dual codes and perfect quantum error-correcting
codes. Unit weighing matrices appear in the study of quantum informatics
(see Durt et al [DEBŻ10]) and signal processing (see Adams et al [AKP07]).
Butson matrices were studied in Butson [But62, But63], Shrikhande [Shr64],
and Berman [Ber78]. The monograph Seberry [Seb17] is the standard mono-
graph on orthogonal designs.

Radon’s result given here is shown in [Rad22], and Hurwitz extended this
result in [Hur22]. The Theorems 3.6 and 3.8 are obtained from [Seb17]. The
results listed in §§ 3.2 and 3.3, as shown, are taken from Ionin,Shrikhande
[IS06]. Classical parameter BGW matrices were obtained initially in [Ber78].
The construction given here, using simplex codes and registers, are due to
Jungnickel, Tonchev [JT99, JT02]. Valuable discussion of BGW matrices an
their connections to other combinatorial objects can be found in Jungnickel,
Kharaghani [JK04].
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Chapter 4

The Kronecker Product

4.1 Definitions and Properties

The Kronecker Product is a kind of matrix multiplication that produces
a block matrix from two smaller matrices. We define the product thus.

Definition. Let R be any ring. The Kronecker Product is a map ⊗ :
nRm × sRt → nsRmt defined as follows. If A = [aij ] ∈ nRm and B ∈ sRt,
then A⊗B = [aijB].

Example 4.1. It is expected that the product is not commutative. Indeed,
if H =

[
1 1
1 −
]

and K =
[

1 1
− 1

]
, then

H ⊗K =


1 1 1 1
− 1 − 1
1 1 − −
− 1 1 −

 , and

K ⊗H =


1 1 1 1
1 − 1 −
− − 1 1
− 1 1 −

 .

The following properties are readily established.

Proposition 4.2. Let A, B, C, and D be matrices over a commutative
ring such that the following operations of addition and multiplication are
defined. Then:

i. (A⊗B)⊗ C = A⊗ (B ⊗ C);

ii. (A+B)⊗ C = A⊗ C +B ⊗ C and A⊗ (B + C) = A⊗B +A⊗ C;

47
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iii. (rA)⊗B = A⊗ (rB) = r(A⊗B), for any scalar r; and

iv. (A⊗B)(C ⊗D) = AC ⊗BD.

Using the Kronecker Product, we see that Paley’s result 2.7 for prime
powers q ≡ 1 mod 4, can be stated as

H = W1 ⊗
[
1 1
1 −

]
+ I ⊗

[
1 −
− −

]
is a Hadamard matrix of order 2(q + 1), where W1 is an in the proof of
Theorem 2.7. We can, in fact, be more general.

Lemma 4.3. Let S be a matrix of order n such that St = εS, ε = ±1,
and SSt = (n− 1)I. Let A and B be matrices of order m such that AAt =
BBt = mI and ABt = −εBAt. Then for K = A⊗ I +B ⊗ S, we have that
KKt = mnI.

PROOF. This follows by straight forward computation. Observe:

KKt = (A⊗ I +B ⊗ S)(At ⊗ I +Bt ⊗ St)t

= AAt ⊗ In +ABt ⊗ St +BAt ⊗ S +BBt ⊗ SSt

= mIm ⊗ In + (−εBAt)⊗ (εS) +BAt ⊗ S +mIm ⊗ (n− 1)In

= mImn +m(n− 1)Imn

= mnImn,

and the result is complete. Q.E.D.

Proposition 4.4. If q ≡ 1 mod 4, and if n is the order of a Hadamard
matrix, then there is a Hadamard matrix of order n(q + 1).

PROOF. Let q ≡ 1 mod 4 be a prime power. We have shown already that
there is a conference matrix of order q + 1, say W . Let H be a Hadamard
matrix of order n. Define U = In/2 ⊗

[
0 1
− 0

]
and K = UH. Observe:

KKt = nIn,

HKt = −nU , and

KHt = nU.

Then W , H, and K satisfy the conditions of the previous lemma. Q.E.D.

The Kronecker product can be generalized in the following way. Let B be
some matrix over an arbitrary ring, and let A = [aij ] be a matrix over some
group acting on the rows, columns, or entries of A. Then A ⊗ B = [aijB],
where aijB denotes the action of aij on B. We pursue this further in the
following section.
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4.2 Structurally Interesting BGW Matrices

In order to apply the Kronecker product to the construction of BGW
matrices, we will need to employ specific groups acting on the smaller blocks.
To this end, we introduce the so-called groups of symmetries.

Definition. Let G be some finite group, and let M be a non-empty set
of (0, G)-matrices of the same size. A set S of bijections M → M will be
called a group of symmetries if the following are satisfied.

i. (σX)(σY )∗ = XY ∗, for every σ ∈ S and X,Y ∈M, and

ii. for every X ∈M, there is a g ∈ Z[G] such that
∑

σ σX = gJ .

In general, it is difficult to find groups of symmetries; however, there are
some simple, useful examples. For instance, any transitive group acting on
the columns of a matrix is easily seen to be a group of symmetries for any
set of (0, G)-matrices (say M) such that XJ = gJ , for X ∈ M and some
g ∈ ZG. If the group G is cyclic, then we can be more general.

Proposition 4.5. Let G = 〈ω〉 be a cyclic group, and let M be the set
of all BGW(v, k, λ;G) matrices. Let % be the ω-circulant matrix of order v
with first row (0, 1, 0, . . . , 0). Then S = 〈%〉 is a group of symmetries of M
when acting on the right by multiplication.

PROOF. Let X,Y ∈M. Clearly, then, (X%k)(Y %k)∗ = X%k(%k)∗Y ∗ = XY ∗.
Since |%| = v|ω|, we see that

v|ω|−1∑
i=0

X%k =
v−1∑
i=0

|ω|−1∑
j=0

(X%i)ωj =
v−1∑
i=0

(X%i)G = kGJ.

It follows that S is a group of symmetries of M. Q.E.D.

Before moving on, we provide one further simple example of a group of
symmetries in the case of GH matrices.

Proposition 4.6. Let G and S be finite groups, and let M be the set of
GH(G;λ), for some λ > 0. Let f : S → G be an epimorphism, and for each
σ ∈ S, define σX = Xf(σ). Then S is a group of symmetries of M.

PROOF. By simple calculation, we have that (σX)(σY )∗ = Xf(σ)f∗(σ)Y ∗ =
XY ∗ and

∑
σ σX = X

∑
σ f(σ) = |S|XG/|G| = |S|GJ/|G|; hence, S is as

claimed. Q.E.D.

Usually, if the objects to which we are applying the group of symmetries
have particular parameters associated to them, then a successful application
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of the group is predicated on particular parametric conditions. An important
example for us is the application of groups of symmetries to GBRD matrices.

Theorem 4.7. LetM be the set of GBRD(v, b, r, k, λ;G)s over some finite
group G, and let X ∈M. Further, let S be a group of symmetries ofM such
that αX = αG, for α ∈ Z+ and every X ∈M. If there is a BGW(w, l, µ;S)
such that krµ = vλl (say W = [wij ]), then the block matrix W ⊗ X is a
GBRD(vw, bw, rl, kl, λl;G).

PROOF. Define Pij =
∑w

h=1(wihX)(wjhX)∗. Then, if σ1, σ2, . . . σl ∈ S, we
have

Pii =
w∑
h=1

(wihX)(xihX)∗

=
l∑

h=1

(σhX)(σhX)∗

=
l∑

h=1

XX∗

= rlI +
λl

|G|
G(J − I).

In the case that i 6= j, we have

Pij =
w∑
h=1

(wihX)(wjhX)∗

=
w∑
h=1

(w−1
jh wihX)X∗

=
µ

|S|

(∑
σ

σX

)
X∗

=
µα

|S|
GJX∗

=
µαr

|S|
GJ.

Now, multiply both sides of
∑

σ σX = αGJ on the left by GJ t to obtain∑
σ

GJ t(σX) = α(GJ t)(GJ)∑
σ

kGJb = αv|G|GJb

k|S|GJb = αv|G|GJb.
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Therefore, α = k|S|
v|G| , and µαr

|S| = µkr
v|G| = λl

|G| . Q.E.D.

We have shown already the existence of a GH(q, 1) whenever q is a prime
power. The identity automorphism satisfies the conditions of Proposition
4.6, so by the previous Theorem, we have the following.

Corollary 4.8. Let q be a prime power. For every positive n, there is a
GH(q, qn−1).

We are now ready to construct families of BGW matrices over cyclic
groups with classical parameters such that the matrix is either skew-symmetric
or symmetric, given particular parametric conditions. These will be of fun-
damental use in the construction of new orthogonal designs.

Theorem 4.9. Let G = 〈ω〉 be a cyclic group of order g, and let q be a
prime power such that g divides q − 1. For every positive integer n, there
exists a BGW over G with parameters(

q2n − 1

q − 1
, q2n−1, q2n−1 − q2n−2

)
. (4.1)

Moreover, if q(q − 1)/g ≡ 0 mod 2, then the BGW is symmetric with zero
diagonal; while if g ≡ 0 mod 2 and (q − 1)/g ≡ 1 mod 2, then the BGW is
skew-symmetric.

PROOF. Proposition 3.18 provides the base case for the result. Now, let
v = (qn+1− 1)/(q− 1), let k = qn, and let λ = qn− qn−1. LetM be the set
of all ω-circulant BGW(v, k, λ;G)s, and let R be the back identity matrix.
For any X ∈M, we have that XR is back ω-circulant, symmetric BGW with
the same parameters. Let M′ = {XR | X ∈ M}, and let S = 〈%〉 be the
group of symmetries generated by the ω-shift matrix given in Proposition
4.5. We now show the general case.

First, suppose that q(q − 1)/g is even. Since qn+1 − 1 is a multiple
of gv, and since qn+1(qn+1 − 1)/gv is even, we have, by Proposition 3.18,
there is a symmetric generalized conference matrix (say W ) over S of order
qn+1 − 1. Let X ∈ M′. By Theorem 4.7, W ⊗ X, is a BGW with the
required parameters, as since both W and X are symmetric, it follows that
W ⊗X is symmetric with zero diagonal.

Suppose now that (q−1)/g is odd and q is even. Then G is signable with
unique element of order two given by ω

n
2 . Again, using Proposition 3.18,

since qn+1−1 is a multiple of gv, and since gv is even while (qn+1−1)/gv is
odd, there is a skew-symmetric generalized conference matrix (say W ) over
S of order qn+1. Let X ∈ M′; then W ⊗ X is a BGW with the required
parameters. By construction, %

n
2 = ω

n
2 I; whence, (W ⊗X)t = W t ⊗Xt =

%
n
2W ⊗X = ω

n
2 (W ⊗X). This completes the proof. Q.E.D.
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Example 4.10. Define the following weighing matrices.

W =



0 1 1 1 1 1 1 1 1 1
1 0 − 1 − 1 − 1 − 1
1− 0 1 1 1 −− 1 −
1 1 1 0 −−− 1 1 −
1− 1 − 0 1 1 1 −−
1 1 1 − 1 0 −−− 1
1−−− 1 − 0 1 1 1
1 1 − 1 1 − 1 0 −−
1− 1 1 −− 1 − 0 1
1 1 −−− 1 1 − 1 0


, and

X =


1 0 1 −
0 1 −−
1 −− 0
−− 0 −

 .
Then W is a symmetric conference matrix, and X is a back (-1)-circulant
conference matrix. It follows that the matrix W ⊗ X, shown below, is a
symmetrix W(40, 27) with zero diagonal that is also balanced.



0 0 0 0 1 0 1 − 1 0 1 − 1 0 1 − 1 0 1 − 1 0 1 − 1 0 1 − 1 0 1 − 1 0 1 − 1 0 1 −
0 0 0 0 0 1 − − 0 1 − − 0 1 − − 0 1 − − 0 1 − − 0 1 − − 0 1 − − 0 1 − − 0 1 − −
0 0 0 0 1 − − 0 1 − − 0 1 − − 0 1 − − 0 1 − − 0 1 − − 0 1 − − 0 1 − − 0 1 − − 0
0 0 0 0 − − 0 − − − 0 − − − 0 − − − 0 − − − 0 − − − 0 − − − 0 − − − 0 − − − 0 −
1 0 1 − 0 0 0 0 − 0 − 1 1 0 1 − − 0 − 1 1 0 1 − − 0 − 1 1 0 1 − − 0 − 1 1 0 1 −
0 1 − − 0 0 0 0 0 − 1 1 0 1 − − 0 − 1 1 0 1 − − 0 − 1 1 0 1 − − 0 − 1 1 0 1 − −
1 − − 0 0 0 0 0 − 1 1 0 1 − − 0 − 1 1 0 1 − − 0 − 1 1 0 1 − − 0 − 1 1 0 1 − − 0
− − 0 − 0 0 0 0 1 1 0 1 − − 0 − 1 1 0 1 − − 0 − 1 1 0 1 − − 0 − 1 1 0 1 − − 0 −
1 0 1 − − 0 − 1 0 0 0 0 1 0 1 − 1 0 1 − 1 0 1 − − 0 − 1 − 0 − 1 1 0 1 − − 0 − 1
0 1 − − 0 − 1 1 0 0 0 0 0 1 − − 0 1 − − 0 1 − − 0 − 1 1 0 − 1 1 0 1 − − 0 − 1 1
1 − − 0 − 1 1 0 0 0 0 0 1 − − 0 1 − − 0 1 − − 0 − 1 1 0 − 1 1 0 1 − − 0 − 1 1 0
− − 0 − 1 1 0 1 0 0 0 0 − − 0 − − − 0 − − − 0 − 1 1 0 1 1 1 0 1 − − 0 − 1 1 0 1
1 0 1 − 1 0 1 − 1 0 1 − 0 0 0 0 − 0 − 1 − 0 − 1 − 0 − 1 1 0 1 − 1 0 1 − − 0 − 1
0 1 − − 0 1 − − 0 1 − − 0 0 0 0 0 − 1 1 0 − 1 1 0 − 1 1 0 1 − − 0 1 − − 0 − 1 1
1 − − 0 1 − − 0 1 − − 0 0 0 0 0 − 1 1 0 − 1 1 0 − 1 1 0 1 − − 0 1 − − 0 − 1 1 0
− − 0 − − − 0 − − − 0 − 0 0 0 0 1 1 0 1 1 1 0 1 1 1 0 1 − − 0 − − − 0 − 1 1 0 1
1 0 1 − − 0 − 1 1 0 1 − − 0 − 1 0 0 0 0 1 0 1 − 1 0 1 − 1 0 1 − − 0 − 1 − 0 − 1
0 1 − − 0 − 1 1 0 1 − − 0 − 1 1 0 0 0 0 0 1 − − 0 1 − − 0 1 − − 0 − 1 1 0 − 1 1
1 − − 0 − 1 1 0 1 − − 0 − 1 1 0 0 0 0 0 1 − − 0 1 − − 0 1 − − 0 − 1 1 0 − 1 1 0
− − 0 − 1 1 0 1 − − 0 − 1 1 0 1 0 0 0 0 − − 0 − − − 0 − − − 0 − 1 1 0 1 1 1 0 1
1 0 1 − 1 0 1 − 1 0 1 − − 0 − 1 1 0 1 − 0 0 0 0 − 0 − 1 − 0 − 1 − 0 − 1 1 0 1 −
0 1 − − 0 1 − − 0 1 − − 0 − 1 1 0 1 − − 0 0 0 0 0 − 1 1 0 − 1 1 0 − 1 1 0 1 − −
1 − − 0 1 − − 0 1 − − 0 − 1 1 0 1 − − 0 0 0 0 0 − 1 1 0 − 1 1 0 − 1 1 0 1 − − 0
− − 0 − − − 0 − − − 0 − 1 1 0 1 − − 0 − 0 0 0 0 1 1 0 1 1 1 0 1 1 1 0 1 − − 0 −
1 0 1 − − 0 − 1 − 0 − 1 − 0 − 1 1 0 1 − − 0 − 1 0 0 0 0 1 0 1 − 1 0 1 − 1 0 1 −
0 1 − − 0 − 1 1 0 − 1 1 0 − 1 1 0 1 − − 0 − 1 1 0 0 0 0 0 1 − − 0 1 − − 0 1 − −
1 − − 0 − 1 1 0 − 1 1 0 − 1 1 0 1 − − 0 − 1 1 0 0 0 0 0 1 − − 0 1 − − 0 1 − − 0
− − 0 − 1 1 0 1 1 1 0 1 1 1 0 1 − − 0 − 1 1 0 1 0 0 0 0 − − 0 − − − 0 − − − 0 −
1 0 1 − 1 0 1 − − 0 − 1 1 0 1 − 1 0 1 − − 0 − 1 1 0 1 − 0 0 0 0 − 0 − 1 − 0 − 1
0 1 − − 0 1 − − 0 − 1 1 0 1 − − 0 1 − − 0 − 1 1 0 1 − − 0 0 0 0 0 − 1 1 0 − 1 1
1 − − 0 1 − − 0 − 1 1 0 1 − − 0 1 − − 0 − 1 1 0 1 − − 0 0 0 0 0 − 1 1 0 − 1 1 0
− − 0 − − − 0 − 1 1 0 1 − − 0 − − − 0 − 1 1 0 1 − − 0 − 0 0 0 0 1 1 0 1 1 1 0 1
1 0 1 − − 0 − 1 1 0 1 − 1 0 1 − − 0 − 1 − 0 − 1 1 0 1 − − 0 − 1 0 0 0 0 1 0 1 −
0 1 − − 0 − 1 1 0 1 − − 0 1 − − 0 − 1 1 0 − 1 1 0 1 − − 0 − 1 1 0 0 0 0 0 1 − −
1 − − 0 − 1 1 0 1 − − 0 1 − − 0 − 1 1 0 − 1 1 0 1 − − 0 − 1 1 0 0 0 0 0 1 − − 0
− − 0 − 1 1 0 1 − − 0 − − − 0 − 1 1 0 1 1 1 0 1 − − 0 − 1 1 0 1 0 0 0 0 − − 0 −
1 0 1 − 1 0 1 − − 0 − 1 − 0 − 1 − 0 − 1 1 0 1 − 1 0 1 − − 0 − 1 1 0 1 − 0 0 0 0
0 1 − − 0 1 − − 0 − 1 1 0 − 1 1 0 − 1 1 0 1 − − 0 1 − − 0 − 1 1 0 1 − − 0 0 0 0
1 − − 0 1 − − 0 − 1 1 0 − 1 1 0 − 1 1 0 1 − − 0 1 − − 0 − 1 1 0 1 − − 0 0 0 0 0
− − 0 − − − 0 − 1 1 0 1 1 1 0 1 1 1 0 1 − − 0 − − − 0 − 1 1 0 1 − − 0 − 0 0 0 0


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4.3 Applications to BIBDs and GBRDs

In this section we will apply BGW matrices to the construction of BIBDs
and GBRDs using the Kronecker product. To begin, we note that in the
case of classical parameter BGW matrices and quasi-residual designs, the
parametric condition of Theorem 4.7 reduces to q = r. It remains to find
quasi-residual designs with an applicable group of symmytries. We will
initially turn to resolvability.

To begin, note that if one has a resolvable BIBD, then one may cyclically
permute the blocks of each resolution class. The group just defined has order
the least common multiple of the cardinalities of the resolution classes. Since
this group is a cyclic group acting on the columns of a BIBD, it follows that
it is a group of symmetries for the set of all such designs. Moreover, if r
is a prime power, and if the least common multiple of the cardinalities of
the resolution classes of the design divides r− 1, then there is a BGW with
classical parameteres over the above group. In this way, we can apply the
construction of the previous section with the trivial group to obtain a class
of larger BIBDs.

The above discussion is sufficient for the following result.

Theorem 4.11. Suppose the existence of a quasi-residual BIBD(v, b, r, k, λ)
admitting a resolution such that the cardinality of each resolution class
divides r − 1. If r is a prime power, then there is a quasi-residual design
with parameters (

v(rn − 1)

r − 1
,
b(rn − 1)

r − 1
, rn, krn−1, λrn−1

)
,

for every n > 1.

Corollary 4.12. Let q be a prime power, and let n > 1. If r = (qn−1)/(q−
1) is a prime power, then there is a quasi-residual design with parameters(

qn(rm − 1)

r − 1
,
qr(rm − 1)

r − 1
, rm, qn−1rm−1,

(qn−1 − 1)rm−1

q − 1

)
,

for every m > 1.

PROOF. It is well known that every AGn−1(n, q) is affine resolvable. We
remind the reader that the parameters of AGn−1(n, q) are given by(

qn,
q(qn − 1)

q − 1
,
qn − 1

q − 1
, qn−1,

qn−1 − 1

q − 1

)
;

whence, by Theorem 1.14, we have that the cardinality of each resolution
class is q. Let G be the cyclic group of order q acting on the resolution
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classes of AGn−1(n, q). By assumption, r = (qn − 1)/(q − 1) is a prime
power, and moreover, since r − 1 =

∑n−1
i=1 q

i, we have that q divides r − 1;
therefore, there is a BGW((rm−1)/(r−1), rm−1, rm−1−rm−2;G), for every
m > 1 (say W ). If X is the incidence matrix of AGn−1(n, q), then W ⊗X
is the required design. Q.E.D.

Note that we may assume the columns of AGn−1(n, q) are partitioned
into the resolution classes, each of size q. If g is the circulant matrix of order
q with first row (0, 1, 0, . . . , 0), then define % = Ir⊗g, with r = (qn−1)/(q−1).
We may then take G = 〈%〉 in the above construction. This idea will be
important for what is to follow. For the moment, however, we will move on
to develop a group of symmetries for another family of designs.

Consider the quasi-residual block designs with the parameters(
r + 1, 2r, r,

r + 1

2
,
r − 1

2

)
. (4.2)

Let X be the incidence matrix of one such design. Then J−X has the same
parameters. Take M = {X,J −X}, and let σY = J − Y , for each Y ∈M.
Since the parameters are invariant under complementation, we have that
(σY )(σY )t = Y Y t. Also, Y (J − Y )t = r+1

2 (J − I) = (J − Y )Y t. Therefore,
(σY )(σZ)t = Y Zt for every Y,Z ∈ M. Finally, Y + (J − Y ) = J ; whence,
we have shown that 〈σ〉 is a group of symmetries on M. We then have the
following result.

Theorem 4.13. If there is a BIBD with parameters (4.2) such that r is an
odd prime power, then there is a BIBD with parameters(

(r + 1)(rn − 1)

r − 1
,
2r(rn − 1)

r − 1
, rn,

(r + 1)rn−1

2
,
(r − 1)rm−1

2

)
.

A Hadamard matrix of order 4n is equivalent to the existence of a sym-
metric BIBD(4n− 1, 2n− 1, n− 1). The residuals of these designs have the
parameters (4.2), with r = 2n−1. Particular families of Hadamard matrices
are readily applicable to the construction.

Corollary 4.14. Let q be any odd prime power. Then there is a BIBD
with the parameters(

(q + 1)(qn − 1)

q − 1
,
2q(qn − 1)

q − 1
, qn,

qn−1(q + 1)

2
,
qn−1(q − 1)

2

)
,

for every n > 0.

PROOF. The constructions of Paley and Sylvester, together with Proposition
4.4, imply the existence of a Hadamard matrix of order 2(q + 1), whenever
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q is an odd prime power. These are equivalent to symmetric BIBD(2q +
1, q, (q − 1)/2)s, whose residual designs have the parameters(

q + 1, 2q, q,
q + 1

2
,
q − 1

2

)
.

Apply the result to these designs. Q.E.D.

Corollary 4.15. Let q ≡ −1 mod 4 such that r = (q−1)/2 is an odd prime
power. Then there is a BIBD with the parameters(

(q + 1)(rn − 1)

2(r − 1)
,
(q − 1)(rn − 1)

r − 1
,
(q − 1)rn−1

2
,
(q + 1)rn−1

4
,
(q − 3)rn−1

4

)
,

for every n > 0.

PROOF. By Theorem 2.7, there is a Hadamard matrix of order q+1 whenever
q ≡ −1 mod 4 is a prime power. These are equivalent to the existence
of symmetric BIBD(q, (q − 1)/2, (q − 3)/4)s, whose residual designs have
parameters (

q + 1

2
, q − 1,

q − 1

2
,
q + 1

4
,
q − 3

4

)
.

We apply the result to these designs. Q.E.D.

At this point, it is natural to ask whether or not the quasi-residual
designs constructed in this section are, in fact, embeddable. The following
construction answers this question in the affirmative, at least in the case of
those constructed from affine geometries.

Theorem 4.16. Let q and p = q+ 1 be prime powers, and let n > 1. Then
there is a symmetric BIBD(p(pn − 1) + 1, pn, pn−1).

PROOF. Let A be the incidence matrix for the AG1(2, q). Since p = q+1 is a
prime power, there is a BGW((pn−1)/(p−1), pn−1, pn−1−pn−2), for n > 1,
over the cyclic group acting on the parallel classes of A, say W = [wij ].
Then W ⊗A is a quasi-residual BIBD with parameters(

(p− 1)(pn − 1), p(pn − 1), pn, pn−1(p− 1), pn−1
)
.

Let B be the incidence matrix of AGn−1(n, p). Then B⊗ jtq is a BIBD with
parameters (

pn, p(pn − 1), pn − 1, pn−1, pn−1 − 1
)
.

We claim that [
0 W ⊗A
j B ⊗ jtq

]
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is the required design. Note that it suffices to show that (W ⊗ A)(B ⊗
jtq)

t = pn−1J . To this end, we assume that B is partitioned into its parallel
classes as B = [B1, B2, . . . , Bk], where k = (pn − 1)/(p− 1); and moreover,

the entry decomposition of each parallel class will be given as Bi = [b
(i)
uv ].

Since, for every u, there is precisely one v such that b
(i)
uv = 1, we have

that (wstA)(Bi ⊗ jtq)
t = J after noting that the parallel classes of wstA are

positioned above the block columns of Bi ⊗ jtq. There are pn−1 non-zero

blocks in every row of W ; whence, (W ⊗A)(B ⊗ jtq)
t = pn−1J . Q.E.D.

Example 4.17. An AG1(2, 2)
1 0 1 0 1 0
1 0 0 1 0 1
0 1 1 0 0 1
0 1 0 1 1 0

 ,
and an AG2(3, 3)

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0
0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0
0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0
1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 1 0 0
0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 0
0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0
1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 1 0
0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1 0
0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0
1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0
0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0
0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 1 0
1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 0 1 0
0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 1 0
0 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 1
0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 1
0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1
0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1
0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 1
1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1
0 1 0 1 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 1
0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1



.
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Using a BGW(13,9,6;Z2), we construct a symmetric BIBD(79,27,9).



0 000000101010010101101010101010101010010101000000000000101010101010000000101010
0 000000100101011010100101100101100101011010000000000000100101100101000000100101
0 000000011001100110011001011001011001100110000000000000011001011001000000011001
0 000000010110101001010110010110010110101001000000000000010110010110000000010110
0 010101000000101010010101101010101010101010010101000000000000101010101010000000
0 011010000000100101011010100101100101100101011010000000000000100101100101000000
0 100110000000011001100110011001011001011001100110000000000000011001011001000000
0 101001000000010110101001010110010110010110101001000000000000010110010110000000
0 000000010101000000101010010101101010101010101010010101000000000000101010101010
0 000000011010000000100101011010100101100101100101011010000000000000100101100101
0 000000100110000000011001100110011001011001011001100110000000000000011001011001
0 000000101001000000010110101001010110010110010110101001000000000000010110010110
0 010101000000010101000000101010010101101010101010101010010101000000000000101010
0 011010000000011010000000100101011010100101100101100101011010000000000000100101
0 100110000000100110000000011001100110011001011001011001100110000000000000011001
0 101001000000101001000000010110101001010110010110010110101001000000000000010110
0 010101010101000000010101000000101010010101101010101010101010010101000000000000
0 011010011010000000011010000000100101011010100101100101100101011010000000000000
0 100110100110000000100110000000011001100110011001011001011001100110000000000000
0 101001101001000000101001000000010110101001010110010110010110101001000000000000
0 000000010101010101000000010101000000101010010101101010101010101010010101000000
0 000000011010011010000000011010000000100101011010100101100101100101011010000000
0 000000100110100110000000100110000000011001100110011001011001011001100110000000
0 000000101001101001000000101001000000010110101001010110010110010110101001000000
0 000000000000010101010101000000010101000000101010010101101010101010101010010101
0 000000000000011010011010000000011010000000100101011010100101100101100101011010
0 000000000000100110100110000000100110000000011001100110011001011001011001100110
0 000000000000101001101001000000101001000000010110101001010110010110010110101001
0 101010000000000000010101010101000000010101000000101010010101101010101010101010
0 100101000000000000011010011010000000011010000000100101011010100101100101100101
0 011001000000000000100110100110000000100110000000011001100110011001011001011001
0 010110000000000000101001101001000000101001000000010110101001010110010110010110
0 010101101010000000000000010101010101000000010101000000101010010101101010101010
0 011010100101000000000000011010011010000000011010000000100101011010100101100101
0 100110011001000000000000100110100110000000100110000000011001100110011001011001
0 101001010110000000000000101001101001000000101001000000010110101001010110010110
0 010101010101101010000000000000010101010101000000010101000000101010010101101010
0 011010011010100101000000000000011010011010000000011010000000100101011010100101
0 100110100110011001000000000000100110100110000000100110000000011001100110011001
0 101001101001010110000000000000101001101001000000101001000000010110101001010110
0 010101010101010101101010000000000000010101010101000000010101000000101010010101
0 011010011010011010100101000000000000011010011010000000011010000000100101011010
0 100110100110100110011001000000000000100110100110000000100110000000011001100110
0 101001101001101001010110000000000000101001101001000000101001000000010110101001
0 101010010101010101010101101010000000000000010101010101000000010101000000101010
0 100101011010011010011010100101000000000000011010011010000000011010000000100101
0 011001100110100110100110011001000000000000100110100110000000100110000000011001
0 010110101001101001101001010110000000000000101001101001000000101001000000010110
0 010101101010010101010101010101101010000000000000010101010101000000010101000000
0 011010100101011010011010011010100101000000000000011010011010000000011010000000
0 100110011001100110100110100110011001000000000000100110100110000000100110000000
0 101001010110101001101001101001010110000000000000101001101001000000101001000000
1 110000110000110000110000110000110000110000110000110000110000110000110000110000
1 001100001100001100001100001100001100001100001100001100110000110000110000110000
1 000011000011000011000011000011000011000011000011000011110000110000110000110000
1 110000001100000011110000001100000011110000001100000011001100001100001100110000
1 001100000011110000001100000011110000001100000011110000001100001100001100110000
1 000011110000001100000011110000001100000011110000001100001100001100001100110000
1 110000000011001100110000000011001100110000000011001100000011000011000011110000
1 001100110000000011001100110000000011001100110000000011000011000011000011110000
1 000011001100110000000011001100110000000011001100110000000011000011000011110000
1 110000110000110000001100001100001100000011000011000011110000001100000011001100
1 001100001100001100000011000011000011110000110000110000110000001100000011001100
1 000011000011000011110000110000110000001100001100001100110000001100000011001100
1 110000001100000011001100000011110000000011110000001100001100000011110000001100
1 001100000011110000000011110000001100110000001100000011001100000011110000001100
1 000011110000001100110000001100000011001100000011110000001100000011110000001100
1 110000000011001100001100110000000011000011001100110000000011110000001100001100
1 001100110000000011000011001100110000110000000011001100000011110000001100001100
1 000011001100110000110000000011001100001100110000000011000011110000001100001100
1 110000110000110000000011000011000011001100001100001100110000000011001100000011
1 001100001100001100110000110000110000000011000011000011110000000011001100000011
1 000011000011000011001100001100001100110000110000110000110000000011001100000011
1 110000001100000011000011110000001100001100000011110000001100110000000011000011
1 001100000011110000110000001100000011000011110000001100001100110000000011000011
1 000011110000001100001100000011110000110000001100000011001100110000000011000011
1 110000000011001100000011001100110000001100110000000011000011001100110000000011
1 001100110000000011110000000011001100000011001100110000000011001100110000000011
1 000011001100110000001100110000000011110000000011001100000011001100110000000011



.

The constructions of the section are given to include those designs that
have intra-positional balance, namely, generalized Bhaskar Rao designs. To
employ these constructions to obtain a novel famly of GBRD matrices, we
give an important example.
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Example 4.18. A BGW(15,7,3;Z3).

3 3 1 0 2 0 0 0 3 2 0 1 0 0 0
3 0 3 1 0 2 0 0 0 3 2 0 1 0 0
3 0 0 3 1 0 2 0 0 0 3 2 0 1 0
3 0 0 0 3 1 0 2 0 0 0 3 2 0 1
3 2 0 0 0 3 1 0 1 0 0 0 3 2 0
3 0 2 0 0 0 3 1 0 1 0 0 0 3 2
3 1 0 2 0 0 0 3 2 0 1 0 0 0 3
0 3 3 3 3 3 3 3 0 0 0 0 0 0 0
0 3 2 0 1 0 0 0 0 0 2 0 2 2 3
0 0 3 2 0 1 0 0 3 0 0 2 0 2 2
0 0 0 3 2 0 1 0 2 3 0 0 2 0 2
0 0 0 0 3 2 0 1 2 2 3 0 0 2 0
0 1 0 0 0 3 2 0 0 2 2 3 0 0 2
0 0 1 0 0 0 3 2 2 0 2 2 3 0 0
0 2 0 1 0 0 0 3 0 2 0 2 2 3 0



.

The residual part of this matrix is a GBRD(8,14,7,4,3;Z3) shown below.

A =



3 3 3 3 3 3 3 0 0 0 0 0 0 0
3 2 0 1 0 0 0 0 0 2 0 2 2 3
0 3 2 0 1 0 0 3 0 0 2 0 2 2
0 0 3 2 0 1 0 2 3 0 0 2 0 2
0 0 0 3 2 0 1 2 2 3 0 0 2 0
1 0 0 0 3 2 0 0 2 2 3 0 0 2
0 1 0 0 0 3 2 2 0 2 2 3 0 0
2 0 1 0 0 0 3 0 2 0 2 2 3 0


.

Note that the residual GBRD A has the form[
3 . . . 3 0 . . . 0

A1 A2

]
,

where A1 = J−A2 after changing the non-zero entries to unity. If Z3 = 〈ω〉,
then we define G = 〈[ 0 1

ω 0 ] ⊗ R7〉, where R7 is the back identity matrix of
order seven. In much the same way as before, one sees that G is a group
of symmetries on the orbit of A under the action of its generator. Since
|G| = 6, and since the replication number of A is seven, we have shown the
following.

Proposition 4.19. Let n > 1. There is a quasi-residual GBRD over Z3

with parameters(
4

3
(7n − 1),

7

3
(7n − 1), 7n, 4 · 7n−1, 3 · 7n−1

)
.
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PROOF. Form the matrix W⊗A, where W is a BGW((7n−1)/6, 7n−1, 7n−1−
7n−2;G). Q.E.D.

Of course, there is still the question of the embeddability of the family
of GBRDs just given. Evidently, they are not embedabble by any of the
standard methods. Thus, we see that the added condition of intra-positional
balance forces these objects to be much more difficult to work with.

4.4 Notes

The Kronecker product is an important function of linear algebra, and
so, it appears quite naturally in the theory of combinatorial matrices. Paley
[Pal33] used this product quite successfully, as we’ve already seen. Lemma
4.3 and Proposition 4.4 are generalizations of Paley’s constructions and ap-
pear in Hall [Hal86].

The symmetric BGW matrices with zero diagonal constructed in §4.2
first appeared in Kharaghani [Kha03]. Ionin, Kharaghani[IK03b] used these
symmetric BGW matrices to construct new families of strongly regular
graphs (see Ionin, Shrikhande[IS06] and Brouwer et al [BCN89]). The skew-
symmetric BGW matrices of the same section appeared in Ionin, Kharaghani
[IK03a], where they were used to construct new families of the so-called dou-
bly regular, asymmetric digraphs. The presentation given here is taken from
[IS06]. Theorem 4.7 is a generalization of that given in Ionin [Ion01, IS06].

Theorems 4.11 and 4.13 and their corollaries first appeared in [Ion01],
and they are addressed in [IS06] in greater detail. Theorem 4.16 presents
a novel construction of the Rajkundlia designs [Raj83], which are also con-
tained in the larger class of Ionin type designs found in [Ion01]. The gener-
alized Bhaskar Rao designs of Proposition 4.19 appear to be new.





Chapter 5

Hadamard Matrices

5.1 Quaternary Unit Hadamard Matrices

Recall that a unit Hadamard matrix is a matrix of order n (say H)
with unimodular complex entries such that HH∗ = nI. In Chapter 2 we
considered several subsets of such matrices, that is, those whose entries
are roots of unity. In this section, we will focus on another subset of unit
Hadamard matrices, namely, those matrices satisfying the equation HH∗ =
nI, whose entries are from the field extension Q[

√
q,
√
q + 1, i].

Definition. Let H be a square matrix of order n, with entries from the set{
±1±i

√
m√

m+1
, ±i±

√
m√

m+1

}
, such that HH∗ = nI. We say that H is a quaternary

unit Hadamard matrix of order n, and we denote this as QUH(n).

To motivate the results of this chapter, we will need the following idea.

Definition. Let S = {A1, A2, . . . , As;B1, B2, . . . , Bt} be a family of matri-
ces, each of order n, such that

∑
AiA

∗
i + q

∑
BjB

∗
j = fI, for some prime

power q. Then we say that S is a q(s,t)-suitable family of matrices. If s = t,
then we write q(s)-suitable for simplicity. We call f the ordinate of suitabil-
ity.

q-suitability is interesting in that it provides a method for recursively
building families of such matrices. In what follows, Q will be the Paley
matrix of order q.

Proposition 5.1. Let q be an odd prime power, and let {A;B} be a q(1)-
suitable family of matrices of order n. Define Am and Bm for every non-

61
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negative integer m thus.

Am =

{
A if m = 0, and

Jq ⊗Bm−1 otherwise.

Bm =

{
B if m = 0, and

Iq ⊗Am−1 + εQ⊗Bm−1 otherwise.

We have the following.

i. Let AB∗−BA∗ = 0. Then {Am;Bm} is an amicable q(1)-suitable fam-
ily of matrices in each of the following two cases. First, q ≡ −1 mod 4
and ε = 1. Second, q ≡ 1 mod 4 and ε = i.

ii. Let AB∗+BA∗ = 0. Then {Am;Bm} is an anti-amicable q(1)-suitable
family of matrices in each of the following two cases. First, q ≡
−1 mod 4 and ε = i. Second, q ≡ 1 mod 4 and ε = 1.

Moreover, in every case, the ordinate of suitability is given by qmf .

PROOF. We will prove the case where q ≡ 1 mod 4, ε = 1, and (A,B) is
an anti-amicable pair, all other cases being similar. Assume, for m− 1 > 0,
we have that Am−1A

∗
m−1 + qBm−1B

∗
m−1 = qm−1fInqm−1 and Am−1B

∗
m−1 +

Bm−1A
∗
m−1 = 0. Observe:

AmA
∗
m + qBmB

∗
m = (J ⊗Bm−1)(J ⊗Bm−1)∗+

q(I ⊗Am−1 +Q⊗Bm−1)(I ⊗Am−1 +Q⊗Bm−1)∗

= qJ ⊗Bm−1B
∗
m−1+

q(I ⊗Am−1A
∗
m−1 +Q⊗Am−1B

∗
m−1 +Q⊗Bm−1A

∗
m−1+

QQ∗ ⊗Bm−1B
∗
m−1)

= qJ ⊗Bm−1B
∗
m−1 + q(I ⊗Am−1A

∗
m−1 + (qI − J)⊗Bm−1B

∗
m−1)

= qI ⊗ (Am−1A
∗
m−1 + qBm−1B

∗
m−1)

= qmfInqm .

Therefore, {Am;Bm} is a q(1)-suitable family of matrices. Finally,

AmB
∗
m = (J ⊗Bm−1)(I ⊗Am−1 +A⊗Bm−1)∗

= J ⊗Bm−1A
∗
m−1

= −J ⊗Am−1B
∗
m−1

= −BmA∗m;

whence, (Am, Bm) is an anti-amicable pair. Q.E.D.

Evidently, q-suitability can be exploited to construct families of matrices
with pairwise orthogonal rows.
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Proposition 5.2. Let q be an odd prime power, and let {A;B} be a q-
suitable family of matrices of order n. Define

X =

[
0 jt

(−1)
q+1

2 j Q

]
⊗B + ε

[
−1 0
0 Iq

]
⊗A.

We have the following.

i. Let AB∗ − BA∗ = 0. If q ≡ −1 mod 4 and ε = 1, or if q ≡ 1 mod 4
and ε = i, then XX∗ = fIn(q+1).

ii. Let AB∗ + BA∗ = 0. If q ≡ −1 mod 4 and ε = i, or if q ≡ 1 mod 4
and ε = 1, then XX∗ = fIn(q+1).

PROOF. We prove the case that (A,B) is an anti-amicable pair, q ≡ 1 mod 4,
and ε = 1. We have

X =

[
0 jt

−j Q

]
⊗B +

[
− 0
0 Iq

]
⊗A.

Hence,

XX∗ = qIq+1 ⊗BB∗ +

[
0 jt

j Q

]
⊗BA∗+[

0 jt

j Q

]
⊗AB∗ + Iq+1 ⊗AAt

= Iq+1 ⊗ (AA∗ + qBB∗)

= fIn(q+1).

Thus, X is as claimed. Q.E.D.

Taking A = B = [1] yields the skew-type Hadamard matrices of Paley;
however, we can do more.

Corollary 5.3. Let q ≡ 1 mod 4 be a prime power. There is an H(2qn(q+
1)) for every n ≥ 0.

PROOF. Take A = [ 1 −
1 1 ] and B = [ 1 1

− 1 ]. Then (A,B) is an anti-ammicable
pair of Hadamard matrices; whence, they are q-suitable with ordinate of
suitability 2. Apply the recursion of Proposition 5.1. Q.E.D.

Corollary 5.4. Let q be any odd prime power. There is a CH(qn(q + 1)),
for every n ≥ 0.

PROOF. Take A = [1] and B = [i]. Apply the recursion of Proposition 5.1.
Q.E.D.
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We are ready to construct some families of QUH matrices, but first we
extend the definition of QUH matrices in the following way. Let {1, i, j, k}
be the usual group of quaternions. Then a QUH(n) is a matrix (say H)

whose entries are from the set
{
±ε1±ε2

√
q√

q+1
| ε1, ε2 = 1, i, j, k; ε1 6= ε2

}
such

that HH∗ = nI.

Theorem 5.5. Let q be an odd prime power, and let {A;B} be an amicable
family of q(1)-suitable (−1, 1)-matrices of order n with ordinate of suitability
n(q + 1). Then

1√
q + 1

A+ i

√
q

√
q + 1

B, and

i√
q + 1

A+

√
q

√
q + 1

B

are QUH(n)s. If {A;B} is an amicable family of q(1)-suitable (±1,±i)-
matrices of order n with ordinate n(q + 1). Then

1√
q + 1

A+ j

√
q

√
q + 1

B, and

j√
q + 1

A+

√
q

√
q + 1

B

are QUH(n)s.

PROOF. We show the case that A and B are (-1,1)-matrices and X =
(A+ i

√
qB)/

√
q + 1. We have XX∗ = (AA∗+qBB∗)/(q+1) = nI. Q.E.D.

Corollary 5.6. For every odd prime power q, there is a QUH(qn), for every
n > 0.

PROOF. Take A = B = [1] and apply the recursion of Proposition 5.1.
Q.E.D.

Of course, one can ask if we can have strictly complex QUH matrices
in the case that q ≡ 1 mod 4. Evidently we can; though, it comes at the
expense of a greater complexity of the underlying q(1)-suitable matrices. We
will say that two (±1,±i)-matrices are complex complimentary if one has
±1 whenever the other has ±i, and conversely. We then have the follow-
ing result, whose proof is similar to that of Theorem 5.5 and is, therefore,
omitted.

Theorem 5.7. Let q be a prime power, and let {A;B} be an anti-amicable,
q(1)-suitable, complex complementary family of matrices of order n, with
ordinate n(q + 1). Then

X =
1√
q + 1

A+

√
q

√
q + 1

B
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is a QUH(n).

Corollary 5.8. Let p ≡ 1 mod 4 be a prime power. There is a QUH(p+1).

PROOF. We have shown the existence of a symmetric conference matrix of
order p+ 1 whenever p ≡ 1 mod 4, say W . Then W + iI and iW − I form
an anti-amicable, complex complementary pair of CH(p + 1)s. Thus, they
are trivially a family of q(1)-suitable matrices of for every odd prime power
q. Moreover, they have ordinate of suitability (q + 1)(p + 1). The result
follows. Q.E.D.

Corollary 5.9. If there is an H(n), then there is a QUH(n).

PROOF. If H is a H(n), then H and iH are the required matrices. Q.E.D.

5.2 Morphisms of QUH Matrices

In this section, we will introduce a kind of morphism from the set of qua-
ternary unit Hadamard matrices to the set of complex Hadamard matrices.
We must, however, introduce the following.

The Hadamard matrices constructed as a result of Proposition 2.7, for
those prime powers q ≡ −1 mod 4, have the form H = I +W , where W is
a skew-symmetric conference matrix. More generally, any matrix (say X)
with constant diagonal such that X = xI + P , where P ∗ = −P , will be
called skew-type.

Let αm = 1+i
√
m√

m+1
, and let βm =

√
m+i√
m+1

. In the next result, we will need

the following two polynomials over Q[x].

pαm(x) = x4 +
2(m− 1)

m+ 1
x2 + 1 pβm(x) = x4 − 2(m− 1)

m+ 1
x2 + 1

We have the following result.

Proposition 5.10. Let H be any skew-type Hadamard matrix of order

m+ 1, such that m+ 1 is non-square. Then Q(αm, βm) ' Q
(

1√
m+1

H, i
)

.

PROOF. It can be checked that βm is a root of pβm(x). Then −βm and
±β∗m are also roots of pβm(x). Therefore, pβm(x) = (x − βm)(x + βm)(x −
β∗m)(x+β∗m) over C[x]. Since βm and β∗m are not in Q, it follows that pβm(x)
is irreducible over Q. Moreover, since β−1

m = β∗m, it follows that Q(βm) is
the splitting field of pβm(x). It is a straighforward calculation to show that

i√
m+1

H is a root of pβm(x), and so it is the minimal polynomial of this

matrix. We have shown

Q[x]

(pβm(x))
' Q(βm) ' Q

(
i√

m+ 1
H

)
.



CHAPTER 5. HADAMARD MATRICES 66

The case of pαm(x) and 1√
m+1

H is similar. Q.E.D.

We note that in the case m+1 is a square, it follows that the polynomials
pαm(x) and pβm(x) factor into two irreducible quadradics, corresponding to
the minimal polynomials of ±αm and ±βm, respectively. Then the minimal
polynomials of αm and 1√

m+1
H, −αm and −1√

m+1
Ht, βm and i√

m+1
H, −βm

and −i√
m+1

Ht, respectively, correspond. The next result also holds in the

case that m+ 1 is a perfect square with minor modifications.

Proposition 5.11. If there exists a properly complex QUH(n) with entries

from the set
{
±1±i

√
m√

m
, ±i±

√
m√

m+1

}
, and if there is a skew-type CH(m+1), then

there is a CH(nm+ n).

PROOF. Let H be a skew-type CH(m+ 1), and let K = [kij ] be a properly

complex QUH(n). Define ϕ by 1+i
√
m√

m+1
7→ 1√

m+1
H and i+

√
m√

m+1
7→ i√

m+1
H.

If we take ϕ|Q as Q → QI, then ϕ extends uniquely to an isomomorphism
Q(αm, βm)→ Q(H/

√
m+ 1, i). Define Kϕ by kij 7→ ϕ(kij). Observe:

(m+ 1)
∑
h

ϕ(kih)ϕ(kjh)∗ = (m+ 1)ϕ

(∑
h

kihk
∗
jh

)
= (m+ 1)ϕ(nδji )

= (nm+ n)In.

Therefore,
√
m+ 1Kϕ is a CH(nm+ n). Q.E.D.

Finding morphisms for QUH matrices with quaternions is, in general,
more difficult. We may, however, derive certain constructions in specific
cases as the following example shows.

Example 5.12. The matrices A = J5 and B = I5 + iQ5 form an amicable
family of 5(1)-suitable matrices. Then

X =
1√
6
A+ j

√
5√
6
B

is a QUH(5) with entries 1+j
√

5√
6

and 1±k
√

5√
6

. Let W be a symmetric con-

ference matrix of order 6. Apply the map 1+j
√

5√
6
7→ I + jW and 1+k

√
5√

6
7→

I + kW , to obtain a quaternion Hadamard matrix of order thirty.

Note that the unimodular numbers ±i±j
√
m√

m+1
and ±i±k

√
m√

m+1
have minimal

polynomial x2 + 1 over Q; hence, we need Hermitian Hadamard matrices,
but their form remains elusive.
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5.3 Notes

Properly complex quaternary unit Hadamard matrices were originally
introduced in Fender et al [FKS18]. There the results of Propositions 5.1,
5.2, and 5.5 regarding amicable families of q-suitable matrices were shown.
The parallel developments for those families of anti-amicable q-suitable ma-
trices followed over the course of the preparation of this thesis. Theorem
5.7 also followed during this preparation.

Using the notation of §5.2, the morphisms αm 7→ H/
√
m+ 1, for some

skew-type Hadamard matrix of order m + 1, were first shown in Heikoop
et al [HPOCP20]. The elegance of the method presented there struck the
authors, and it highlights a beautiful connectivity between otherwise seem-
ingly disparate objects. Their method is most useful when employing q-
suitable matrices for q ≡ −1 mod 4. The extension of this development to
include the element βm and the more general quaternion forms, along with
the cases of complex complementary matrices, arose in an effort to employ
those famlies of q-suitable matrices where q ≡ 1 mod 4. At the completion
of this treatise, morphisms involving Hermitian Hadamard matrices is still
not solved; however, it would seem to be a more tractable problem.





Chapter 6

Orthogonal Designs and
Constant Weight Codes

6.1 Main Constructions

Let W be some skew-symmetric weighing matrix of weight k, and let
(A,B) be an amicable pair of orthogonal design. Clearly, W ⊗B is also an
OD; however, because of the anti-symmetry of W , we can also form the block
matrix X = I⊗A+W⊗B. Then XX∗ = (I⊗A+W⊗B)(I⊗A∗−W⊗B∗) =
I ⊗AA∗ +WW ∗ ⊗BB∗ = I ⊗ (AA∗ + kBB∗). Therefore, X is an OD. For
the case that W is symmetric, we follow the same construction using A and
iB. It follows that if A, B, and W are real, then this construction can
only give a real OD in the case that W is skew-symmetric. One may ask if
the construction can be expanded to give real ODs in cases that the simple
method would fail to yield. We can, in fact, provide a positive answer to
this question in certain cases.

Recall the existence of a BGW((q2d−1)/(q−1), q2d−1, q2d−1−q2d−2;G),
where q is any prime power, and where G is any cyclic group of order n such
that q−1 is a multiple of n. If n ≡ 0 mod 2, and if (q−1)/n ≡ 1 mod 2, then
we have shown that W is skew-symmetric. Therefore, if G = 〈−1〉, then W
will be skew-symmetric precisely when q ≡ −1 mod 4. In this cases, we can
form the matrix I ⊗ A+W ⊗B. Note that W will be symmetric over this
group, however, if q ≡ 1 mod 4. To expand this construction to those prime
powers q ≡ 1 mod 4, we must use a different group in the BGW.

Define g = [ 0 1
− 0 ] ⊗ Im, and let G = 〈g〉. Then |g| = 4, and (q − 1)/4 ≡

1 mod 2 precisely when q ≡ 5 mod 8. In the next result, we will need the
following block arrays.

α =

[
A B
−B A

]
, and β =

[
C D
D −C

]
.

We will further take W = [wij ] to be the BGW with parameters 4.1 over

69
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the group G = 〈g〉 just defined. The following result provides an answer to
our question.

Theorem 6.1. Let q ≡ 1 mod 4 be a prime power, and let {A,B;C,D}
be an amicable q2d−1

(2) -suitable family of matrices of order n, with entries

from the set {0,±x1, . . . ,±xρ}, and with ordinate of suitability f =
∑
six

2
i .

Define
X = I ⊗ α+ εW ⊗ β,

where ε ∈ {1, i}. Then:

i. If q ≡ 5 mod 8, and if ε = 1, then X is an OD(v; s1, s2, . . . , sρ); and

ii. if q ≡ 1 mod 8, and if ε = i, then X is a COD(v; s1, s2, . . . , sρ);

where v = 2n(q2d − 1)/(q − 1).

PROOF. Recall |g| = 4, and let ξ = (q − 1)/4. Since the set of matrices
{A,B;C,D} is pairwise amicable, it follows that α and β are amicable.
Moreover, ββt is constant block diagonal; whence, gββt = ββtg. Further,
note that αβt = [X Y

Y −X ] so that gkαβt = αβt(gk)t.

i. Assume q ≡ 5 mod 8 and ε = 1. Then ξ ≡ 1 mod 2; whence, wij =
−wij . Let ri and rj be any two block rows of X. If i = j, then

rir
t
j = ααt +

q2d−1∑
k=1

gkβ(gkβ)t

= ααt +

q2d−1∑
k=1

gkββt(gk)t

= ααt +

q2d−1∑
k=1

ββtgk(gk)t

= ααt + q2d−1ββt

=

(
ρ∑

k=1

skx
2
k

)
I2n.

If i 6= j, then there are two cases to consider. First, if wij 6= 0, then

rir
t
j = −α(gmβ)t + gmβαt + q2d−1ξ

3∑
k=0

gk

= −αβt(gm)t + gmαβt

= −αβt(gm)t + αβt(gm)t

= 0,

where m = logwij . The second case, in which wij = 0, is immediate.
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ii. Assume q ≡ 1 mod 8 and ε = i. Then ξ ≡ 0 mod 2; whence, wij =

wji. As in i., it follows, mutatis mutandis, that rir
∗
j = (

∑
skx

2
k)I2nδ

j
i .

In any case, we have, therefore, that XX∗ = (
∑
skx

2
k)Iv. Q.E.D.

Of course, if α and β are any q(1)-suitable (not an AOD as assumed at
the start of this section), then I ⊗ α + W ⊗ β will be a design in the case
that W is skew-symmetric.

The block matrices α and β used in the previous result may be replaced
with other suitable arrays. For example, if we instead take

α =

[
−A A
A A

]
, and

[
B B
B −B

]
,

then one may obtain a similar result. First, let W = [wij ] be as before, and
let R = [ 0 1

1 0 ]⊗ In. Define W̃ = [wijR]. We then have the following.

Theorem 6.2. Let q be any odd prime power, and let {A;B} be any family
of q2d−1

(1) -suitable matrices, whose entries are in the set {0,±x1, . . . ,±xρ},
and with ordinate of suitability f =

∑
six

2
i . Further, let the group over

which W̃ is defined be chosen to reflect the value of q modulo 4. Define

X = I ⊗ α+ W̃ ⊗ β.

Then:

i. If q ≡ 5 mod 8 or q ≡ 3 mod 4, and if ABt − BAt = 0, then X is an
OD(v; 2s1, 2s2, . . . , 2sρ); and

ii. if q ≡ 1 mod 8, and ifABt+BAt = 0, thenX is an OD(v; 2s1, 2s1, . . . , 2sρ);

where v = 2n(q2d − 1)/(q − 1).

PROOF. Note that αβt = [ 0 −2ABt

2ABt 0
]. Then one may verify that ABt and

gkR anti-commute for k ∈ {0, 1, 2, 3}. The remainder of the proof is similar
to that of Theorem 6.1, and is therefore omitted. Q.E.D.

The follow proposition is simply a collection of immediate corollaries of
the results we have thusfar obtained.

Proposition 6.3. Let d ∈ Z+, and let v = (q2d − 1)/(q − 1). Further,
let q be any odd prime power, and let {A,B;C,D} be a family of pairwise
amicable q2d−1

(2) -suitable matrices. Then:

i. If B ,C, and D are symmetric, while A is skew-type, then the resulting
design will be skew-type.
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ii. If A, B, C, and D have no zero entries, and if d = 1, then the resulting
design will be full.

iii. There is a skew-type design of order 2v and type (1, 1, q2d−1, q2d−1).

iv. If n is the order of a pair of amicable Hadamard matrices (see Seberry,
Yamada [SY92]), then there is a skew-type design of order 2nv and
type (1, n− 1, n, nq2d−1, nq2d−1).

v. For every odd q, there is a design of order 2q2d−1v and type (q4d−2, q4d−2);
and for q ≡ 1 mod 4, there is a design of the same order with type
(q2d−1(q2d−1 + 1), q2d−1(q2d−1 + 1)).

vi. If there are two families of q2d−1
(1) -suitable matrices of order n such that

each pair is amicable, then there is an anti-amicable pair of designs of
order 2nv.

PROOF. i., ii., and iv. are obvious. iii. follows from the AOD(2; (1, 1); (1, 1))
given by [ a b

b̄ a
] and [ c dd c̄ ].

To show v., let Q be the Paley matrix of order q. Then we take A = aJ ,
B = bJ , C = aQ, and D = bQ in the first case; and we take A = aJ ,
B = bJ , C = bI + aQ, and D = bQ− aI in the second case.

To show vi., we let {Ã; B̃} and {C̃; D̃} be our two families of q2d−1
(1) -

suitable matrices such that each pair is amicable. We then take W̃ as above
and define the following.

α =

[
Ã Ã

Ã −Ã

]
β =

[
B̃ B̃

B̃ −B̃

]
γ =

[
−C̃ C̃

C̃ C̃

]
η =

[
−D̃ D̃

D̃ D̃

]
Then the designs X = I⊗α+ W̃ ⊗β and Y = I⊗γ+ W̃ ⊗ η can be verified
to be anti-amicable by routine calculation. Q.E.D.
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Example 6.4. i. From amicable Hadamard matrices of order 4, a skew-
type OD(24;1,1,2,10,10).

e a b b c c d d c c d d c c d d c c d d c c d d
ā e b b̄ c c̄ d d̄ c c̄ d d̄ c c̄ d d̄ c c̄ d d̄ c c̄ d d̄
b̄ b̄ e a d d c̄ c̄ d d c̄ c̄ d d c̄ c̄ d d c̄ c̄ d d c̄ c̄
b̄ b ā e d d̄ c̄ c d d̄ c̄ c d d̄ c̄ c d d̄ c̄ c d d̄ c̄ c
c̄ c̄ d̄ d̄ e a b b d d c̄ c̄ c̄ c̄ d̄ d̄ d̄ d̄ c c c c d d
c̄ c d̄ d ā e b b̄ d d̄ c̄ c c̄ c d̄ d d̄ d c c̄ c c̄ d d̄
d̄ d̄ c c b̄ b̄ e a c̄ c̄ d̄ d̄ d̄ d̄ c c c c d d d d c̄ c̄
d̄ d c c̄ b̄ b ā e c̄ c d̄ d d̄ d c c̄ c c̄ d d̄ d d̄ c̄ c
c̄ c̄ d̄ d̄ d̄ d̄ c c e a b b d d c̄ c̄ c c d d c̄ c̄ d̄ d̄
c̄ c d̄ d d̄ d c c̄ ā e b b̄ d d̄ c̄ c c c̄ d d̄ c̄ c d̄ d
d̄ d̄ c c c c d d b̄ b̄ e a c̄ c̄ d̄ d̄ d d c̄ c̄ d̄ d̄ c c
d̄ d c c̄ c c̄ d d̄ b̄ b ā e c̄ c d̄ d d d̄ c̄ c d̄ d c c̄
c̄ c̄ d̄ d̄ c c d d d̄ d̄ c c e a b b c̄ c̄ d̄ d̄ d d c̄ c̄
c̄ c d̄ d c c̄ d d̄ d̄ d c c̄ ā e b b̄ c̄ c d̄ d d d̄ c̄ c
d̄ d̄ c c d d c̄ c̄ c c d d b̄ b̄ e a d̄ d̄ c c c̄ c̄ d̄ d̄
d̄ d c c̄ d d̄ c̄ c c c̄ d d̄ b̄ b ā e d̄ d c c̄ c̄ c d̄ d
c̄ c̄ d̄ d̄ d d c̄ c̄ c̄ c̄ d̄ d̄ c c d d e a b b d̄ d̄ c c
c̄ c d̄ d d d̄ c̄ c c̄ c d̄ d c c̄ d d̄ ā e b b̄ d̄ d c c̄
d̄ d̄ c c c̄ c̄ d̄ d̄ d̄ d̄ c c d d c̄ c̄ b̄ b̄ e a c c d d
d̄ d c c̄ c̄ c d̄ d d̄ d c c̄ d d̄ c̄ c b̄ b ā e c c̄ d d̄
c̄ c̄ d̄ d̄ c̄ c̄ d̄ d̄ c c d d d̄ d̄ c c d d c̄ c̄ e a b b
c̄ c d̄ d c̄ c d̄ d c c̄ d d̄ d̄ d c c̄ d d̄ c̄ c ā e b b̄
d̄ d̄ c c d̄ d̄ c c d d c̄ c̄ c c d d c̄ c̄ d̄ d̄ b̄ b̄ e a
d̄ d c c̄ d̄ d c c̄ d d̄ c̄ c c c̄ d d̄ c̄ c d̄ d b̄ b ā e


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ii. An AAOD(80; (2,54); (2,54)).



aa 0 0 0 0 0 0 b b̄ 0 0 b b̄ b b̄ b b̄ 0 0 b b̄ b b̄ b b̄ 0 0 b b̄ b b̄ b b̄ 0 0 b b̄ b b̄ b b̄ 0 0 b b̄ b b̄ b b̄ 0 0 b b̄ b b̄ b b̄ 0 0 b b̄ b b̄ b b̄ 0 0 b b̄ b b̄ b b̄ 0 0 b b̄ b b̄
a ā 0 0 0 0 0 0 b b 0 0 b b b b b b 0 0 b b b b b b 0 0 b b b b b b 0 0 b b b b b b 0 0 b b b b b b 0 0 b b b b b b 0 0 b b b b b b 0 0 b b b b b b 0 0 b b b b
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b̄ b̄ 0 0 b̄ b̄ b̄ b̄ a ā 0 0 0 0 0 0 b̄ b̄ b b 0 0 b b b̄ b̄ b̄ b̄ b b 0 0 0 0 b̄ b̄ b̄ b̄ b b b̄ b̄ 0 0 b̄ b̄ b̄ b̄ b b b̄ b̄ 0 0 b̄ b̄ b b b b b̄ b̄ 0 0 0 0 b b b b b̄ b̄ b b 0 0 b b b b
0 0 b̄ b b̄ b b b̄ 0 0aa 0 0 0 0 b b̄ 0 0 b b̄ b b̄ b̄ b b b̄ 0 0 b b̄ b̄ b b̄ b b b̄ 0 0 0 0 b̄ b b̄ b b b̄ b̄ b 0 0 b̄ b b̄ b b b̄ b̄ b 0 0 b̄ b b b̄ b b̄ b̄ b 0 0 0 0 b b̄ b b̄ b̄ b
0 0 b̄ b̄ b̄ b̄ b b 0 0a ā 0 0 0 0 b b 0 0 b b b b b̄ b̄ b b 0 0 b b b̄ b̄ b̄ b̄ b b 0 0 0 0 b̄ b̄ b̄ b̄ b b b̄ b̄ 0 0 b̄ b̄ b̄ b̄ b b b̄ b̄ 0 0 b̄ b̄ b b b b b̄ b̄ 0 0 0 0 b b b b b̄ b̄
b̄ b b̄ b b b̄ 0 0 0 0 0 0aa 0 0 0 0 b b̄ b b̄ b̄ b b b̄ 0 0 b b̄ b b̄ b̄ b b b̄ 0 0 b b̄ b̄ b b̄ b b b̄ 0 0 0 0 b̄ b b̄ b b b̄ b̄ b 0 0 b̄ b b̄ b b b̄ b̄ b 0 0 b̄ b b b̄ b b̄ b̄ b 0 0
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b̄ b̄ 0 0 b̄ b̄ b̄ b̄ b b b̄ b̄ 0 0 b̄ b̄ a ā 0 0 0 0 0 0 0 0 b b b b b̄ b̄ b b b b b̄ b̄ 0 0 0 0 b̄ b̄ b̄ b̄ b b b̄ b̄ b b 0 0 b b b̄ b̄ 0 0 b̄ b̄ b̄ b̄ b b 0 0 b b b b b̄ b̄ b̄ b̄ b b 0 0
0 0 b̄ b b̄ b b b̄ b̄ b 0 0 b̄ b b̄ b 0 0aa 0 0 0 0 b b̄ b b̄ b̄ b 0 0 b b̄ b̄ b 0 0 b̄ b b̄ b b̄ b b b̄ 0 0 b b̄ 0 0 b b̄ b b̄ 0 0 b̄ b b̄ b b b̄ 0 0 b b̄ b b̄ b̄ b b̄ b b b̄ 0 0 b b̄
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b̄ b̄ b̄ b̄ b b 0 0 0 0 b̄ b̄ b̄ b̄ b b 0 0 0 0a ā 0 0 b b b̄ b̄ 0 0 b̄ b̄ b̄ b̄ 0 0 b̄ b̄ b̄ b̄ b̄ b̄ b b 0 0 b b 0 0 b b b b b̄ b̄ b̄ b̄ b̄ b̄ b b 0 0 b b b b b̄ b̄ 0 0 b b 0 0 b b b b
b̄ b b b̄ 0 0 b b̄ b̄ b b̄ b b b̄ 0 0 0 0 0 0 0 0aa b̄ b 0 0 b̄ b b̄ b 0 0 b̄ b b̄ b b b̄ b b̄ 0 0 b b̄ b b̄ b b̄ b b̄ b̄ b 0 0 b̄ b b b̄ 0 0 b b̄ b b̄ b̄ b 0 0 b̄ b 0 0 b b̄ b b̄ b̄ b
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b̄ b̄ b̄ b̄ b b 0 0 b̄ b̄ 0 0 b̄ b̄ b̄ b̄ b̄ b̄ b b 0 0 b b 0 0 0 0a ā 0 0 b b b b b̄ b̄ 0 0 b b b̄ b̄ 0 0 b̄ b̄ b̄ b̄ b̄ b̄ b b 0 0 b b 0 0 b b b b 0 0 b̄ b̄ b̄ b̄ b b 0 0 b b b b b̄ b̄
b̄ b b b̄ 0 0 b b̄ 0 0 b̄ b b̄ b b b̄ b b̄ 0 0 b b̄ b b̄ 0 0 0 0 0 0aa b b̄ b̄ b 0 0 b̄ b b̄ b 0 0 b̄ b b̄ b b̄ b b b̄ 0 0 b b̄ 0 0 b b̄ b b̄ b̄ b b̄ b b̄ b b b̄ 0 0 b b̄ b b̄ b̄ b 0 0
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b̄ b b̄ b b b̄ 0 0 b b̄ 0 0 b b̄ b b̄ b b̄ b b̄ b̄ b 0 0 b̄ b 0 0 b̄ b b̄ b 0 0 b b̄ b b̄ b̄ b 0 0 b̄ b b̄ b b b̄ b b̄ b̄ b 0 0 b̄ b 0 0 0 0aa 0 0 b̄ b b̄ b b b̄ 0 0 b̄ b b b̄ 0 0 b b̄
b̄ b̄ b̄ b̄ b b 0 0 b b 0 0 b b b b b b b b b̄ b̄ 0 0 b̄ b̄ 0 0 b̄ b̄ b̄ b̄ 0 0 b b b b b̄ b̄ 0 0 b̄ b̄ b̄ b̄ b b b b b̄ b̄ 0 0 b̄ b̄ 0 0 0 0a ā 0 0 b̄ b̄ b̄ b̄ b b 0 0 b̄ b̄ b b 0 0 b b
b̄ b b b̄ 0 0 b b̄ 0 0 b b̄ b b̄ b̄ b b b̄ b̄ b 0 0 b̄ b 0 0 b̄ b b̄ b b b̄ b b̄ b b̄ b̄ b 0 0 b̄ b b̄ b b b̄ 0 0 b̄ b 0 0 b̄ b b̄ b 0 0 0 0 0 0aa b̄ b b b̄ 0 0 b b̄ b b̄ 0 0 b b̄ b b̄
b̄ b̄ b b 0 0 b b 0 0 b b b b b̄ b̄ b b b̄ b̄ 0 0 b̄ b̄ 0 0 b̄ b̄ b̄ b̄ b b b b b b b̄ b̄ 0 0 b̄ b̄ b̄ b̄ b b 0 0 b̄ b̄ 0 0 b̄ b̄ b̄ b̄ 0 0 0 0 0 0a ā b̄ b̄ b b 0 0 b b b b 0 0 b b b b
b̄ b 0 0 b̄ b b̄ b 0 0 b̄ b b̄ b b b̄ b̄ b 0 0 b̄ b b̄ b b̄ b b b̄ 0 0 b b̄ 0 0 b b̄ b b̄ b̄ b b̄ b b̄ b b b̄ 0 0 b b̄ b b̄ b̄ b 0 0 b b̄ 0 0 b b̄ b b̄ aa 0 0 0 0 0 0 b b̄ b̄ b 0 0 b̄ b
b̄ b̄ 0 0 b̄ b̄ b̄ b̄ 0 0 b̄ b̄ b̄ b̄ b b b̄ b̄ 0 0 b̄ b̄ b̄ b̄ b̄ b̄ b b 0 0 b b 0 0 b b b b b̄ b̄ b̄ b̄ b̄ b̄ b b 0 0 b b b b b̄ b̄ 0 0 b b 0 0 b b b b a ā 0 0 0 0 0 0 b b b̄ b̄ 0 0 b̄ b̄
0 0 b̄ b b̄ b b b̄ b̄ b b̄ b b b̄ 0 0 0 0 b̄ b b̄ b b b̄ b b̄ 0 0 b b̄ b b̄ b b̄ b b̄ b̄ b 0 0 b̄ b b b̄ 0 0 b b̄ b b̄ b̄ b 0 0 b̄ b 0 0 b b̄ b b̄ b̄ b 0 0aa 0 0 0 0 b̄ b 0 0 b̄ b b̄ b
0 0 b̄ b̄ b̄ b̄ b b b̄ b̄ b̄ b̄ b b 0 0 0 0 b̄ b̄ b̄ b̄ b b b b 0 0 b b b b b b b b b̄ b̄ 0 0 b̄ b̄ b b 0 0 b b b b b̄ b̄ 0 0 b̄ b̄ 0 0 b b b b b̄ b̄ 0 0a ā 0 0 0 0 b̄ b̄ 0 0 b̄ b̄ b̄ b̄
b̄ b b̄ b b b̄ 0 0 b̄ b b b̄ 0 0 b b̄ b̄ b b̄ b b b̄ 0 0 0 0 b b̄ b b̄ b̄ b b b̄ b̄ b 0 0 b̄ b b b̄ 0 0 b b̄ b b̄ b̄ b 0 0 b̄ b b̄ b b b̄ b b̄ b̄ b 0 0 0 0 0 0aa 0 0 0 0 b̄ b b̄ b b b̄
b̄ b̄ b̄ b̄ b b 0 0 b̄ b̄ b b 0 0 b b b̄ b̄ b̄ b̄ b b 0 0 0 0 b b b b b̄ b̄ b b b̄ b̄ 0 0 b̄ b̄ b b 0 0 b b b b b̄ b̄ 0 0 b̄ b̄ b̄ b̄ b b b b b̄ b̄ 0 0 0 0 0 0a ā 0 0 0 0 b̄ b̄ b̄ b̄ b b
b̄ b b b̄ 0 0 b b̄ b b̄ 0 0 b b̄ b b̄ b̄ b b b̄ 0 0 b b̄ b b̄ b b̄ b̄ b 0 0 b̄ b 0 0 b̄ b b̄ b 0 0 b b̄ b b̄ b̄ b 0 0 b̄ b b̄ b b b̄ b b̄ b̄ b 0 0 b̄ b 0 0 0 0 0 0aa b̄ b b̄ b b b̄ 0 0
b̄ b̄ b b 0 0 b b b b 0 0 b b b b b̄ b̄ b b 0 0 b b b b b b b̄ b̄ 0 0 b̄ b̄ 0 0 b̄ b̄ b̄ b̄ 0 0 b b b b b̄ b̄ 0 0 b̄ b̄ b̄ b̄ b b b b b̄ b̄ 0 0 b̄ b̄ 0 0 0 0 0 0a ā b̄ b̄ b̄ b̄ b b 0 0
b̄ b 0 0 b̄ b b̄ b b̄ b 0 0 b̄ b b̄ b b b̄ b b̄ b̄ b 0 0 b b̄ b̄ b 0 0 b̄ b b̄ b b̄ b b b̄ 0 0 b b̄ 0 0 b b̄ b b̄ 0 0 b̄ b b̄ b b b̄ 0 0 b b̄ b b̄ b̄ b b̄ b b b̄ 0 0 b b̄ aa 0 0 0 0 0 0
b̄ b̄ 0 0 b̄ b̄ b̄ b̄ b̄ b̄ 0 0 b̄ b̄ b̄ b̄ b b b b b̄ b̄ 0 0 b b b̄ b̄ 0 0 b̄ b̄ b̄ b̄ b̄ b̄ b b 0 0 b b 0 0 b b b b 0 0 b̄ b̄ b̄ b̄ b b 0 0 b b b b b̄ b̄ b̄ b̄ b b 0 0 b b a ā 0 0 0 0 0 0
0 0 b̄ b b̄ b b b̄ 0 0 b̄ b b̄ b b b̄ b b̄ b̄ b 0 0 b̄ b b̄ b 0 0 b̄ b b̄ b b̄ b b b̄ 0 0 b b̄ 0 0 b b̄ b b̄ b̄ b b̄ b b̄ b b b̄ 0 0 b b̄ b b̄ b̄ b 0 0 b b̄ 0 0 b b̄ b b̄ 0 0aa 0 0 0 0
0 0 b̄ b̄ b̄ b̄ b b 0 0 b̄ b̄ b̄ b̄ b b b b b̄ b̄ 0 0 b̄ b̄ b̄ b̄ 0 0 b̄ b̄ b̄ b̄ b̄ b̄ b b 0 0 b b 0 0 b b b b b̄ b̄ b̄ b̄ b̄ b̄ b b 0 0 b b b b b̄ b̄ 0 0 b b 0 0 b b b b 0 0a ā 0 0 0 0
b̄ b b̄ b b b̄ 0 0 b̄ b b̄ b b b̄ 0 0 b̄ b 0 0 b̄ b b̄ b 0 0 b̄ b b̄ b b b̄ b b̄ 0 0 b b̄ b b̄ b b̄ b b̄ b̄ b 0 0 b̄ b b b̄ 0 0 b b̄ b b̄ b̄ b 0 0 b̄ b 0 0 b b̄ b b̄ b̄ b 0 0 0 0aa 0 0
b̄ b̄ b̄ b̄ b b 0 0 b̄ b̄ b̄ b̄ b b 0 0 b̄ b̄ 0 0 b̄ b̄ b̄ b̄ 0 0 b̄ b̄ b̄ b̄ b b b b 0 0 b b b b b b b b b̄ b̄ 0 0 b̄ b̄ b b 0 0 b b b b b̄ b̄ 0 0 b̄ b̄ 0 0 b b b b b̄ b̄ 0 0 0 0a ā 0 0
b̄ b b b̄ 0 0 b b̄ b̄ b b b̄ 0 0 b b̄ 0 0 b̄ b b̄ b b b̄ b̄ b b̄ b b b̄ 0 0 0 0 b b̄ b b̄ b̄ b b b̄ b̄ b 0 0 b̄ b b b̄ 0 0 b b̄ b b̄ b̄ b 0 0 b̄ b b̄ b b b̄ b b̄ b̄ b 0 0 0 0 0 0 0 0aa
b̄ b̄ b b 0 0 b b b̄ b̄ b b 0 0 b b 0 0 b̄ b̄ b̄ b̄ b b b̄ b̄ b̄ b̄ b b 0 0 0 0 b b b b b̄ b̄ b b b̄ b̄ 0 0 b̄ b̄ b b 0 0 b b b b b̄ b̄ 0 0 b̄ b̄ b̄ b̄ b b b b b̄ b̄ 0 0 0 0 0 0 0 0a ā
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c̄ c 0 0 0 0 0 0dd0 0dddddd0 0dddddd0 0dddddd0 0dddddd0 0dddddd0 0dddddd0 0dddddd0 0dddddd0 0dddd
c c 0 0 0 0 0 0 d̄ d0 0 d̄ d d̄ d d̄ d0 0 d̄ d d̄ d d̄ d0 0 d̄ d d̄ d d̄ d0 0 d̄ d d̄ d d̄ d0 0 d̄ d d̄ d d̄ d0 0 d̄ d d̄ d d̄ d0 0 d̄ d d̄ d d̄ d0 0 d̄ d d̄ d d̄ d0 0 d̄ d d̄ d
0 0 c̄ c 0 0 0 0 0 0dddd d̄ d̄0 0dddd d̄ d̄0 0dddd d̄ d̄0 0dddd d̄ d̄0 0dddd d̄ d̄0 0dddd d̄ d̄0 0dddd d̄ d̄0 0dddd d̄ d̄0 0dddd d̄ d̄
0 0 c c 0 0 0 0 0 0 d̄ d d̄ dd d̄0 0 d̄ d d̄ dd d̄0 0 d̄ d d̄ dd d̄0 0 d̄ d d̄ dd d̄0 0 d̄ d d̄ dd d̄0 0 d̄ d d̄ dd d̄0 0 d̄ d d̄ dd d̄0 0 d̄ d d̄ dd d̄0 0 d̄ d d̄ dd d̄
0 0 0 0 c̄ c 0 0dddd d̄ d̄0 0dddd d̄ d̄0 0dddd d̄ d̄0 0dddd d̄ d̄0 0dddd d̄ d̄0 0dddd d̄ d̄0 0dddd d̄ d̄0 0dddd d̄ d̄0 0dddd d̄ d̄0 0
0 0 0 0 c c 0 0 d̄ d d̄ dd d̄0 0 d̄ d d̄ dd d̄0 0 d̄ d d̄ dd d̄0 0 d̄ d d̄ dd d̄0 0 d̄ d d̄ dd d̄0 0 d̄ d d̄ dd d̄0 0 d̄ d d̄ dd d̄0 0 d̄ d d̄ dd d̄0 0 d̄ d d̄ dd d̄0 0
0 0 0 0 0 0 c̄ c dd d̄ d̄0 0 d̄ d̄ dd d̄ d̄0 0 d̄ d̄ dd d̄ d̄0 0 d̄ d̄ dd d̄ d̄0 0 d̄ d̄ dd d̄ d̄0 0 d̄ d̄ dd d̄ d̄0 0 d̄ d̄ dd d̄ d̄0 0 d̄ d̄ dd d̄ d̄0 0 d̄ d̄ dd d̄ d̄0 0 d̄ d̄
0 0 0 0 0 0 c c d̄ dd d̄0 0d d̄ d̄ dd d̄0 0d d̄ d̄ dd d̄0 0d d̄ d̄ dd d̄0 0d d̄ d̄ dd d̄0 0d d̄ d̄ dd d̄0 0d d̄ d̄ dd d̄0 0d d̄ d̄ dd d̄0 0d d̄ d̄ dd d̄0 0d d̄
d̄ d̄0 0 d̄ d̄ d̄ d̄ c̄ c 0 0 0 0 0 0 d̄ d̄ dd0 0dd d̄ d̄ d̄ d̄ dd0 0 0 0 d̄ d̄ d̄ d̄ dd d̄ d̄0 0 d̄ d̄ d̄ d̄ dd d̄ d̄0 0 d̄ d̄ dddd d̄ d̄0 0 0 0dddd d̄ d̄ dd0 0dddd
d d̄0 0d d̄d d̄ c c 0 0 0 0 0 0d d̄ d̄ d0 0 d̄ dd d̄ d d̄ d̄ d0 0 0 0d d̄d d̄ d̄ dd d̄0 0d d̄d d̄ d̄ dd d̄0 0d d̄ d̄ d d̄ dd d̄0 0 0 0 d̄ d d̄ dd d̄ d̄ d0 0 d̄ d d̄ d
0 0 d̄ d̄ d̄ d̄ dd0 0 c̄ c 0 0 0 0dd0 0dddd d̄ d̄ dd0 0dd d̄ d̄ d̄ d̄ dd0 0 0 0 d̄ d̄ d̄ d̄ dd d̄ d̄0 0 d̄ d̄ d̄ d̄ dd d̄ d̄0 0 d̄ d̄ dddd d̄ d̄0 0 0 0dddd d̄ d̄
0 0d d̄d d̄ d̄ d0 0 c c 0 0 0 0 d̄ d0 0 d̄ d d̄ dd d̄ d̄ d0 0 d̄ dd d̄ d d̄ d̄ d0 0 0 0d d̄d d̄ d̄ dd d̄0 0d d̄d d̄ d̄ dd d̄0 0d d̄ d̄ d d̄ dd d̄0 0 0 0 d̄ d d̄ dd d̄
d̄ d̄ d̄ d̄ dd0 0 0 0 0 0 c̄ c 0 0 0 0dddd d̄ d̄ dd0 0dddd d̄ d̄ dd0 0dd d̄ d̄ d̄ d̄ dd0 0 0 0 d̄ d̄ d̄ d̄ dd d̄ d̄0 0 d̄ d̄ d̄ d̄ dd d̄ d̄0 0 d̄ d̄ dddd d̄ d̄0 0
d d̄d d̄ d̄ d0 0 0 0 0 0 c c 0 0 0 0 d̄ d d̄ dd d̄ d̄ d0 0 d̄ d d̄ dd d̄ d̄ d0 0 d̄ dd d̄ d d̄ d̄ d0 0 0 0d d̄d d̄ d̄ dd d̄0 0d d̄d d̄ d̄ dd d̄0 0d d̄ d̄ d d̄ dd d̄0 0
d̄ d̄ dd0 0dd0 0 0 0 0 0 c̄ c dddd d̄ d̄0 0 0 0dddd d̄ d̄ dd0 0dddd d̄ d̄ dd0 0dd d̄ d̄ d̄ d̄ dd0 0 0 0 d̄ d̄ d̄ d̄ dd d̄ d̄0 0 d̄ d̄ d̄ d̄ dd d̄ d̄0 0 d̄ d̄
d d̄ d̄ d0 0 d̄ d0 0 0 0 0 0 c c d̄ d d̄ dd d̄0 0 0 0 d̄ d d̄ dd d̄ d̄ d0 0 d̄ d d̄ dd d̄ d̄ d0 0 d̄ dd d̄ d d̄ d̄ d0 0 0 0d d̄d d̄ d̄ dd d̄0 0d d̄d d̄ d̄ dd d̄0 0d d̄
d̄ d̄0 0 d̄ d̄ d̄ d̄ dd d̄ d̄0 0 d̄ d̄ c̄ c 0 0 0 0 0 0 0 0dddd d̄ d̄ dddd d̄ d̄0 0 0 0 d̄ d̄ d̄ d̄ dd d̄ d̄ dd0 0dd d̄ d̄0 0 d̄ d̄ d̄ d̄ dd0 0dddd d̄ d̄ d̄ d̄ dd0 0
d d̄0 0d d̄d d̄ d̄ dd d̄0 0d d̄ c c 0 0 0 0 0 0 0 0 d̄ d d̄ dd d̄ d̄ d d̄ dd d̄0 0 0 0d d̄d d̄ d̄ dd d̄ d̄ d0 0 d̄ dd d̄0 0d d̄d d̄ d̄ d0 0 d̄ d d̄ dd d̄ d d̄ d̄ d0 0
0 0 d̄ d̄ d̄ d̄ dd d̄ d̄0 0 d̄ d̄ d̄ d̄0 0 c̄ c 0 0 0 0dddd d̄ d̄0 0dd d̄ d̄0 0 d̄ d̄ d̄ d̄ d̄ d̄ dd0 0dd0 0dddd0 0 d̄ d̄ d̄ d̄ dd0 0dddd d̄ d̄ d̄ d̄ dd0 0dd
0 0d d̄d d̄ d̄ dd d̄0 0d d̄d d̄0 0 c c 0 0 0 0 d̄ d d̄ dd d̄0 0 d̄ dd d̄0 0d d̄d d̄ d d̄ d̄ d0 0 d̄ d0 0 d̄ d d̄ d0 0d d̄d d̄ d̄ d0 0 d̄ d d̄ dd d̄ d d̄ d̄ d0 0 d̄ d
d̄ d̄ d̄ d̄ dd0 0 0 0 d̄ d̄ d̄ d̄ dd0 0 0 0 c̄ c 0 0dd d̄ d̄0 0 d̄ d̄ d̄ d̄0 0 d̄ d̄ d̄ d̄ d̄ d̄ dd0 0dd0 0dddd d̄ d̄ d̄ d̄ d̄ d̄ dd0 0dddd d̄ d̄0 0dd0 0dddd
d d̄d d̄ d̄ d0 0 0 0d d̄d d̄ d̄ d0 0 0 0 c c 0 0 d̄ dd d̄0 0d d̄d d̄0 0d d̄d d̄ d d̄ d̄ d0 0 d̄ d0 0 d̄ d d̄ dd d̄ d d̄ d d̄ d̄ d0 0 d̄ d d̄ dd d̄0 0 d̄ d0 0 d̄ d d̄ d
d̄ d̄ dd0 0dd d̄ d̄ d̄ d̄ dd0 0 0 0 0 0 0 0 c̄ c d̄ d̄0 0 d̄ d̄ d̄ d̄0 0 d̄ d̄ d̄ d̄ dddd0 0dddddddd d̄ d̄0 0 d̄ d̄ dd0 0dddd d̄ d̄0 0 d̄ d̄0 0dddd d̄ d̄
d d̄ d̄ d0 0 d̄ dd d̄ d d̄ d̄ d0 0 0 0 0 0 0 0 c c d d̄0 0d d̄d d̄0 0d d̄d d̄ d̄ d d̄ d0 0 d̄ d d̄ d d̄ d d̄ dd d̄0 0d d̄ d̄ d0 0 d̄ d d̄ dd d̄0 0d d̄0 0 d̄ d d̄ dd d̄
d̄ d̄0 0 d̄ d̄ d̄ d̄ dddd d̄ d̄0 0 0 0 d̄ d̄ d̄ d̄ dd c̄ c 0 0 0 0 0 0dd0 0dddd0 0dddd d̄ d̄ d̄ d̄0 0 d̄ d̄ d̄ d̄ d̄ d̄ d̄ d̄ dd0 0dd d̄ d̄0 0 d̄ d̄ d̄ d̄ dd0 0dd
d d̄0 0d d̄d d̄ d̄ d d̄ dd d̄0 0 0 0d d̄d d̄ d̄ d c c 0 0 0 0 0 0 d̄ d0 0 d̄ d d̄ d0 0 d̄ d d̄ dd d̄ d d̄0 0d d̄d d̄ d d̄ d d̄ d̄ d0 0 d̄ dd d̄0 0d d̄d d̄ d̄ d0 0 d̄ d
0 0 d̄ d̄ d̄ d̄ dddd d̄ d̄0 0 d̄ d̄ d̄ d̄ d̄ d̄ dd0 0 0 0 c̄ c 0 0 0 0 0 0dddd d̄ d̄ dddd d̄ d̄0 0 0 0 d̄ d̄ d̄ d̄ dd d̄ d̄ dd0 0dd d̄ d̄0 0 d̄ d̄ d̄ d̄ dd0 0dddd
0 0d d̄d d̄ d̄ d d̄ dd d̄0 0d d̄d d̄ d d̄ d̄ d0 0 0 0 c c 0 0 0 0 0 0 d̄ d d̄ dd d̄ d̄ d d̄ dd d̄0 0 0 0d d̄d d̄ d̄ dd d̄ d̄ d0 0 d̄ dd d̄0 0d d̄d d̄ d̄ d0 0 d̄ d d̄ d
d̄ d̄ d̄ d̄ dd0 0 d̄ d̄0 0 d̄ d̄ d̄ d̄ d̄ d̄ dd0 0dd0 0 0 0 c̄ c 0 0dddd d̄ d̄0 0dd d̄ d̄0 0 d̄ d̄ d̄ d̄ d̄ d̄ dd0 0dd0 0dddd0 0 d̄ d̄ d̄ d̄ dd0 0dddd d̄ d̄
d d̄ d d̄ d̄ d0 0d d̄0 0d d̄d d̄ d d̄ d̄ d0 0 d̄ d0 0 0 0 c c 0 0 d̄ d d̄ dd d̄0 0 d̄ dd d̄0 0d d̄d d̄ d d̄ d̄ d0 0 d̄ d0 0 d̄ d d̄ d0 0d d̄d d̄ d̄ d0 0 d̄ d d̄ dd d̄
d̄ d̄ dd0 0dd0 0 d̄ d̄ d̄ d̄ dddd0 0dddd0 0 0 0 0 0 c̄ c dd d̄ d̄0 0 d̄ d̄ d̄ d̄0 0 d̄ d̄ d̄ d̄ d̄ d̄ dd0 0dd0 0dddd d̄ d̄ d̄ d̄ d̄ d̄ dd0 0dddd d̄ d̄0 0
d d̄ d̄ d0 0 d̄ d0 0d d̄d d̄ d̄ d d̄ d0 0 d̄ d d̄ d0 0 0 0 0 0 c c d̄ dd d̄0 0d d̄d d̄0 0d d̄d d̄ d d̄ d̄ d0 0 d̄ d0 0 d̄ d d̄ dd d̄ d d̄ d d̄ d̄ d0 0 d̄ d d̄ dd d̄0 0
d̄ d̄0 0 d̄ d̄ d̄ d̄0 0dddd d̄ d̄ d̄ d̄ d̄ d̄ dd0 0 d̄ d̄0 0 d̄ d̄ d̄ d̄ c̄ c 0 0 0 0 0 0 d̄ d̄ dd0 0dddd0 0dddddd d̄ d̄0 0 d̄ d̄0 0 d̄ d̄ d̄ d̄ dddddd d̄ d̄0 0
d d̄0 0d d̄d d̄0 0 d̄ d d̄ dd d̄ d d̄ d d̄ d̄ d0 0d d̄0 0d d̄d d̄ c c 0 0 0 0 0 0d d̄ d̄ d0 0 d̄ d d̄ d0 0 d̄ d d̄ d d̄ dd d̄0 0d d̄0 0d d̄d d̄ d̄ d d̄ d d̄ dd d̄0 0
0 0 d̄ d̄ d̄ d̄ dddddd d̄ d̄0 0 d̄ d̄ dd0 0dd0 0 d̄ d̄ d̄ d̄ dd0 0 c̄ c 0 0 0 0dd0 0dddd0 0dddd d̄ d̄ d̄ d̄0 0 d̄ d̄ d̄ d̄ d̄ d̄ d̄ d̄ dd0 0dd d̄ d̄0 0 d̄ d̄
0 0d d̄d d̄ d̄ d d̄ d d̄ dd d̄0 0d d̄ d̄ d0 0 d̄ d0 0d d̄d d̄ d̄ d0 0 c c 0 0 0 0 d̄ d0 0 d̄ d d̄ d0 0 d̄ d d̄ dd d̄ d d̄0 0d d̄d d̄ d d̄ d d̄ d̄ d0 0 d̄ dd d̄0 0d d̄
d̄ d̄ d̄ d̄ dd0 0dd d̄ d̄0 0 d̄ d̄ dd0 0dddd d̄ d̄ d̄ d̄ dd0 0 0 0 0 0 c̄ c 0 0 0 0dddd d̄ d̄ dddd d̄ d̄0 0 0 0 d̄ d̄ d̄ d̄ dd d̄ d̄ dd0 0dd d̄ d̄0 0 d̄ d̄ d̄ d̄
d d̄ d d̄ d̄ d0 0 d̄ dd d̄0 0d d̄ d̄ d0 0 d̄ d d̄ dd d̄ d d̄ d̄ d0 0 0 0 0 0 c c 0 0 0 0 d̄ d d̄ dd d̄ d̄ d d̄ dd d̄0 0 0 0d d̄d d̄ d̄ dd d̄ d̄ d0 0 d̄ dd d̄0 0d d̄d d̄
d̄ d̄ dd0 0dd d̄ d̄0 0 d̄ d̄ d̄ d̄0 0dddd d̄ d̄ d̄ d̄ dd0 0dd0 0 0 0 0 0 c̄ c dddd d̄ d̄0 0dd d̄ d̄0 0 d̄ d̄ d̄ d̄ d̄ d̄ dd0 0dd0 0dddd0 0 d̄ d̄ d̄ d̄ dd
d d̄ d̄ d0 0 d̄ dd d̄0 0d d̄d d̄0 0 d̄ d d̄ dd d̄ d d̄ d̄ d0 0 d̄ d0 0 0 0 0 0 c c d̄ d d̄ dd d̄0 0 d̄ dd d̄0 0d d̄d d̄ d d̄ d̄ d0 0 d̄ d0 0 d̄ d d̄ d0 0d d̄d d̄ d̄ d
d̄ d̄0 0 d̄ d̄ d̄ d̄ dd0 0dddd0 0dddd d̄ d̄0 0 d̄ d̄ d̄ d̄ dddd d̄ d̄0 0 d̄ d̄ c̄ c 0 0 0 0 0 0 d̄ d̄ d̄ d̄ dd0 0 d̄ d̄ dd0 0dddddd d̄ d̄0 0 d̄ d̄0 0 d̄ d̄ d̄ d̄
d d̄0 0d d̄d d̄ d̄ d0 0 d̄ d d̄ d0 0 d̄ d d̄ dd d̄0 0d d̄d d̄ d̄ d d̄ dd d̄0 0d d̄ c c 0 0 0 0 0 0d d̄d d̄ d̄ d0 0d d̄ d̄ d0 0 d̄ d d̄ d d̄ dd d̄0 0d d̄0 0d d̄d d̄
0 0 d̄ d̄ d̄ d̄ dd0 0dddd d̄ d̄ dddd d̄ d̄0 0 d̄ d̄ d̄ d̄ dd0 0 d̄ d̄0 0 d̄ d̄ d̄ d̄0 0 c̄ c 0 0 0 0 d̄ d̄ dd0 0dddd0 0dddddd d̄ d̄0 0 d̄ d̄0 0 d̄ d̄ d̄ d̄ dd
0 0d d̄d d̄ d̄ d0 0 d̄ d d̄ dd d̄ d̄ d d̄ dd d̄0 0d d̄d d̄ d̄ d0 0d d̄0 0d d̄d d̄0 0 c c 0 0 0 0d d̄ d̄ d0 0 d̄ d d̄ d0 0 d̄ d d̄ d d̄ dd d̄0 0d d̄0 0d d̄d d̄ d̄ d
d̄ d̄ d̄ d̄ dd0 0dddd d̄ d̄0 0dd d̄ d̄0 0 d̄ d̄ d̄ d̄ dd0 0dd0 0 d̄ d̄ d̄ d̄ dd0 0 0 0 c̄ c 0 0dd0 0dddd0 0dddd d̄ d̄ d̄ d̄0 0 d̄ d̄ d̄ d̄ d̄ d̄ d̄ d̄ dd0 0
d d̄d d̄ d̄ d0 0 d̄ d d̄ dd d̄0 0 d̄ dd d̄0 0d d̄d d̄ d̄ d0 0 d̄ d0 0d d̄d d̄ d̄ d0 0 0 0 c c 0 0 d̄ d0 0 d̄ d d̄ d0 0 d̄ d d̄ dd d̄ d d̄0 0d d̄d d̄ d d̄ d d̄ d̄ d0 0
d̄ d̄ dd0 0dddd d̄ d̄0 0 d̄ d̄ d̄ d̄0 0 d̄ d̄ d̄ d̄ dd0 0dddd d̄ d̄ d̄ d̄ dd0 0 0 0 0 0 0 0 c̄ c 0 0dddd d̄ d̄ dddd d̄ d̄0 0 0 0 d̄ d̄ d̄ d̄ dd d̄ d̄ dd0 0dd
d d̄ d̄ d0 0 d̄ d d̄ dd d̄0 0d d̄d d̄0 0d d̄d d̄ d̄ d0 0 d̄ d d̄ dd d̄ d d̄ d̄ d0 0 0 0 0 0 0 0 c c 0 0 d̄ d d̄ dd d̄ d̄ d d̄ dd d̄0 0 0 0d d̄d d̄ d̄ dd d̄ d̄ d0 0 d̄ d
d̄ d̄0 0 d̄ d̄ d̄ d̄ d̄ d̄ dd0 0dddd d̄ d̄0 0 d̄ d̄ dd0 0dddd d̄ d̄0 0 d̄ d̄ d̄ d̄ dddd d̄ d̄0 0 c̄ c 0 0 0 0 0 0 0 0 d̄ d̄ d̄ d̄ dd d̄ d̄ d̄ d̄ dd0 0 0 0dddd d̄ d̄
d d̄0 0d d̄d d̄ d d̄ d̄ d0 0 d̄ d d̄ dd d̄0 0d d̄ d̄ d0 0 d̄ d d̄ dd d̄0 0d d̄d d̄ d̄ d d̄ dd d̄0 0 c c 0 0 0 0 0 0 0 0d d̄d d̄ d̄ dd d̄ d d̄ d̄ d0 0 0 0 d̄ d d̄ dd d̄
0 0 d̄ d̄ d̄ d̄ dddd0 0dddd d̄ d̄0 0 d̄ d̄ d̄ d̄0 0dddd d̄ d̄0 0 d̄ d̄ d̄ d̄ dddd d̄ d̄0 0 d̄ d̄0 0 c̄ c 0 0 0 0 d̄ d̄ d̄ d̄ dd0 0 d̄ d̄ dd0 0dddddd d̄ d̄0 0
0 0d d̄d d̄ d̄ d d̄ d0 0 d̄ d d̄ dd d̄0 0d d̄d d̄0 0 d̄ d d̄ dd d̄0 0d d̄d d̄ d̄ d d̄ dd d̄0 0d d̄0 0 c c 0 0 0 0d d̄d d̄ d̄ d0 0d d̄ d̄ d0 0 d̄ d d̄ d d̄ dd d̄0 0
d̄ d̄ d̄ d̄ dd0 0 0 0dddd d̄ d̄0 0 d̄ d̄ d̄ d̄ dddddd d̄ d̄0 0 d̄ d̄ d̄ d̄ dd0 0 d̄ d̄0 0 d̄ d̄ d̄ d̄0 0 0 0 c̄ c 0 0 d̄ d̄ dd0 0dddd0 0dddddd d̄ d̄0 0 d̄ d̄
d d̄ d d̄ d̄ d0 0 0 0 d̄ d d̄ dd d̄0 0d d̄d d̄ d̄ d d̄ d d̄ dd d̄0 0d d̄d d̄ d̄ d0 0d d̄0 0d d̄d d̄0 0 0 0 c c 0 0d d̄ d̄ d0 0 d̄ d d̄ d0 0 d̄ d d̄ d d̄ dd d̄0 0d d̄
d̄ d̄ dd0 0dddddd d̄ d̄0 0 d̄ d̄ d̄ d̄ dd0 0dd d̄ d̄0 0 d̄ d̄ d̄ d̄ dd0 0dd0 0 d̄ d̄ d̄ d̄ dd0 0 0 0 0 0 c̄ c dd0 0dddd0 0dddd d̄ d̄ d̄ d̄0 0 d̄ d̄ d̄ d̄
d d̄ d̄ d0 0 d̄ d d̄ d d̄ dd d̄0 0d d̄d d̄ d̄ d0 0 d̄ dd d̄0 0d d̄d d̄ d̄ d0 0 d̄ d0 0d d̄d d̄ d̄ d0 0 0 0 0 0 c c d̄ d0 0 d̄ d d̄ d0 0 d̄ d d̄ dd d̄ d d̄0 0d d̄d d̄
d̄ d̄0 0 d̄ d̄ d̄ d̄ d̄ d̄ d̄ d̄ dd0 0dd0 0dddddddd d̄ d̄0 0 d̄ d̄ dd0 0dddd d̄ d̄0 0 d̄ d̄0 0dddd d̄ d̄ c̄ c 0 0 0 0 0 0 d̄ d̄0 0 d̄ d̄ d̄ d̄0 0 d̄ d̄ d̄ d̄ dd
d d̄0 0d d̄d d̄ d d̄ d d̄ d̄ d0 0 d̄ d0 0 d̄ d d̄ d d̄ d d̄ dd d̄0 0d d̄ d̄ d0 0 d̄ d d̄ dd d̄0 0d d̄0 0 d̄ d d̄ dd d̄ c c 0 0 0 0 0 0d d̄0 0d d̄d d̄0 0d d̄d d̄ d̄ d
0 0 d̄ d̄ d̄ d̄ dd d̄ d̄ dd0 0dd0 0dddd d̄ d̄ dd d̄ d̄0 0 d̄ d̄ dd0 0dddd d̄ d̄0 0 d̄ d̄ d̄ d̄ dddd d̄ d̄0 0 0 0 c̄ c 0 0 0 0 0 0 d̄ d̄ d̄ d̄ dd d̄ d̄ d̄ d̄ dd0 0
0 0d d̄d d̄ d̄ dd d̄ d̄ d0 0 d̄ d0 0 d̄ d d̄ dd d̄ d̄ dd d̄0 0d d̄ d̄ d0 0 d̄ d d̄ dd d̄0 0d d̄d d̄ d̄ d d̄ dd d̄0 0 0 0 c c 0 0 0 0 0 0d d̄d d̄ d̄ dd d̄ d d̄ d̄ d0 0
d̄ d̄ d̄ d̄ dd0 0dd0 0dddddddd d̄ d̄0 0 d̄ d̄0 0 d̄ d̄ d̄ d̄0 0dddd d̄ d̄0 0 d̄ d̄ d̄ d̄ dddd d̄ d̄0 0 d̄ d̄0 0 0 0 c̄ c 0 0 d̄ d̄ d̄ d̄ dd0 0 d̄ d̄ dd0 0dd
d d̄d d̄ d̄ d0 0 d̄ d0 0 d̄ d d̄ d d̄ d d̄ dd d̄0 0d d̄0 0d d̄d d̄0 0 d̄ d d̄ dd d̄0 0d d̄d d̄ d̄ d d̄ dd d̄0 0d d̄0 0 0 0 c c 0 0d d̄d d̄ d̄ d0 0d d̄ d̄ d0 0 d̄ d
d̄ d̄ dd0 0dd0 0dddd d̄ d̄ dd d̄ d̄0 0 d̄ d̄0 0 d̄ d̄ d̄ d̄ dddddd d̄ d̄0 0 d̄ d̄ d̄ d̄ dd0 0 d̄ d̄0 0 d̄ d̄ d̄ d̄0 0 0 0 0 0 c̄ c d̄ d̄ dd0 0dddd0 0dddd
d d̄ d̄ d0 0 d̄ d0 0 d̄ d d̄ dd d̄ d̄ dd d̄0 0d d̄0 0d d̄d d̄ d̄ d d̄ d d̄ dd d̄0 0d d̄d d̄ d̄ d0 0d d̄0 0d d̄d d̄0 0 0 0 0 0 c c d d̄ d̄ d0 0 d̄ d d̄ d0 0 d̄ d d̄ d
d̄ d̄0 0 d̄ d̄ d̄ d̄0 0 d̄ d̄ d̄ d̄ dd d̄ d̄0 0 d̄ d̄ d̄ d̄ d̄ d̄ dd0 0dd0 0dddd d̄ d̄ d̄ d̄ d̄ d̄ dd0 0dddd d̄ d̄0 0dd0 0dddd c̄ c 0 0 0 0 0 0dd d̄ d̄0 0 d̄ d̄
d d̄0 0d d̄d d̄0 0d d̄d d̄ d̄ dd d̄0 0d d̄d d̄ d d̄ d̄ d0 0 d̄ d0 0 d̄ d d̄ dd d̄ d d̄ d d̄ d̄ d0 0 d̄ d d̄ dd d̄0 0 d̄ d0 0 d̄ d d̄ d c c 0 0 0 0 0 0 d̄ dd d̄0 0d d̄
0 0 d̄ d̄ d̄ d̄ dd d̄ d̄ d̄ d̄ dd0 0 0 0 d̄ d̄ d̄ d̄ dddd0 0dddddddd d̄ d̄0 0 d̄ d̄ dd0 0dddd d̄ d̄0 0 d̄ d̄0 0dddd d̄ d̄0 0 c̄ c 0 0 0 0 d̄ d̄0 0 d̄ d̄ d̄ d̄
0 0d d̄d d̄ d̄ dd d̄ d d̄ d̄ d0 0 0 0d d̄d d̄ d̄ d d̄ d0 0 d̄ d d̄ d d̄ d d̄ dd d̄0 0d d̄ d̄ d0 0 d̄ d d̄ dd d̄0 0d d̄0 0 d̄ d d̄ dd d̄0 0 c c 0 0 0 0d d̄0 0d d̄d d̄
d̄ d̄ d̄ d̄ dd0 0 d̄ d̄ dd0 0dd d̄ d̄ d̄ d̄ dd0 0 0 0dddd d̄ d̄ dd d̄ d̄0 0 d̄ d̄ dd0 0dddd d̄ d̄0 0 d̄ d̄ d̄ d̄ dddd d̄ d̄0 0 0 0 0 0 c̄ c 0 0 0 0 d̄ d̄ d̄ d̄ dd
d d̄ d d̄ d̄ d0 0d d̄ d̄ d0 0 d̄ dd d̄ d d̄ d̄ d0 0 0 0 d̄ d d̄ dd d̄ d̄ dd d̄0 0d d̄ d̄ d0 0 d̄ d d̄ dd d̄0 0d d̄d d̄ d̄ d d̄ dd d̄0 0 0 0 0 0 c c 0 0 0 0d d̄d d̄ d̄ d
d̄ d̄ dd0 0dddd0 0dddd d̄ d̄ dd0 0dddddd d̄ d̄0 0 d̄ d̄0 0 d̄ d̄ d̄ d̄0 0dddd d̄ d̄0 0 d̄ d̄ d̄ d̄ dddd d̄ d̄0 0 d̄ d̄0 0 0 0 0 0 c̄ c d̄ d̄ d̄ d̄ dd0 0
d d̄ d̄ d0 0 d̄ d d̄ d0 0 d̄ d d̄ dd d̄ d̄ d0 0 d̄ d d̄ d d̄ dd d̄0 0d d̄0 0d d̄d d̄0 0 d̄ d d̄ dd d̄0 0d d̄d d̄ d̄ d d̄ dd d̄0 0d d̄0 0 0 0 0 0 c c d d̄ d d̄ d̄ d0 0
d̄ d̄0 0 d̄ d̄ d̄ d̄ d̄ d̄0 0 d̄ d̄ d̄ d̄ dddd d̄ d̄0 0dd d̄ d̄0 0 d̄ d̄ d̄ d̄ d̄ d̄ dd0 0dd0 0dddd0 0 d̄ d̄ d̄ d̄ dd0 0dddd d̄ d̄ d̄ d̄ dd0 0dd c̄ c 0 0 0 0 0 0
d d̄0 0d d̄d d̄ d d̄0 0d d̄d d̄ d̄ d d̄ dd d̄0 0 d̄ dd d̄0 0d d̄d d̄ d d̄ d̄ d0 0 d̄ d0 0 d̄ d d̄ d0 0d d̄d d̄ d̄ d0 0 d̄ d d̄ dd d̄ d d̄ d̄ d0 0 d̄ d c c 0 0 0 0 0 0
0 0 d̄ d̄ d̄ d̄ dd0 0 d̄ d̄ d̄ d̄ dddd d̄ d̄0 0 d̄ d̄ d̄ d̄0 0 d̄ d̄ d̄ d̄ d̄ d̄ dd0 0dd0 0dddd d̄ d̄ d̄ d̄ d̄ d̄ dd0 0dddd d̄ d̄0 0dd0 0dddd0 0 c̄ c 0 0 0 0
0 0d d̄d d̄ d̄ d0 0d d̄d d̄ d̄ d d̄ dd d̄0 0d d̄d d̄0 0d d̄d d̄ d d̄ d̄ d0 0 d̄ d0 0 d̄ d d̄ dd d̄ d d̄ d d̄ d̄ d0 0 d̄ d d̄ dd d̄0 0 d̄ d0 0 d̄ d d̄ d0 0 c c 0 0 0 0
d̄ d̄ d̄ d̄ dd0 0 d̄ d̄ d̄ d̄ dd0 0 d̄ d̄0 0 d̄ d̄ d̄ d̄0 0 d̄ d̄ d̄ d̄ dddd0 0dddddddd d̄ d̄0 0 d̄ d̄ dd0 0dddd d̄ d̄0 0 d̄ d̄0 0dddd d̄ d̄0 0 0 0 c̄ c 0 0
d d̄d d̄ d̄ d0 0d d̄d d̄ d̄ d0 0d d̄0 0d d̄d d̄0 0d d̄d d̄ d̄ d d̄ d0 0 d̄ d d̄ d d̄ d d̄ dd d̄0 0d d̄ d̄ d0 0 d̄ d d̄ dd d̄0 0d d̄0 0 d̄ d d̄ dd d̄0 0 0 0 c c 0 0
d̄ d̄ dd0 0dd d̄ d̄ dd0 0dd0 0 d̄ d̄ d̄ d̄ dd d̄ d̄ d̄ d̄ dd0 0 0 0dddd d̄ d̄ dd d̄ d̄0 0 d̄ d̄ dd0 0dddd d̄ d̄0 0 d̄ d̄ d̄ d̄ dddd d̄ d̄0 0 0 0 0 0 0 0 c̄ c
d d̄ d̄ d0 0 d̄ dd d̄ d̄ d0 0 d̄ d0 0d d̄d d̄ d̄ dd d̄ d d̄ d̄ d0 0 0 0 d̄ d d̄ dd d̄ d̄ dd d̄0 0d d̄ d̄ d0 0 d̄ d d̄ dd d̄0 0d d̄d d̄ d̄ d d̄ dd d̄0 0 0 0 0 0 0 0 c c



The structure of the BGWs W and W̃ can be exploited in other ways
as well. To this end, we note that W and W̃ are, in fact, disjoint weigh-
ing matrices. The proof of the following result comes by straightforward
calculations.
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Proposition 6.5. Let W and W̃ be as above, and let v = (q2d− 1)/(q− 1).
Then:

i. If A is an OD(m; s1, s2, . . . , sρ), then X = W ⊗A is an
OD(mv; q2d−1s1, q

2d−1s2, . . . , q
2d−1sρ); and

ii. if (A,B) is an AAOD(m; (s1, s2, . . . , sρ); (t1, t2, . . . , tσ)), then , under-
stand W and W̃ as weighing matrices only, X = W ⊗A+ W̃ ⊗B is a
design order kv and type (q2d−1s1, . . . , q

2d−1sρ, q
2d−1t1, . . . , q

2d−1tσ).

Example 6.6. The matrix A given by

A =



b̄ b a 0 b b
b a b̄ b 0 b
a b̄ b b b 0
0 b b b b̄ ā
b 0 b b̄ ā b
b b 0 ā b b̄


is a symmetric OD(6; 1, 4). Using i. of the Proposition, for q = 5 and d = 1,
we find that we have a skew-symmetric OD(36; 5, 20), say X. However, since
X is skew-symmetric, cI +X is a skew-type OD(36; 1, 5, 20).
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

c 00000 b̄ b a0 b b b̄ b a0 b b b̄ b a0 b b b̄ b a0 b b b̄ b a0 b b
0 c 0000 ba b̄ b 0 b ba b̄ b 0 b ba b̄ b 0 b ba b̄ b 0 b ba b̄ b 0 b
00 c 000a b̄ b b b 0a b̄ b b b 0a b̄ b b b 0a b̄ b b b 0a b̄ b b b 0
000 c 000 b b b b̄ ā0 b b b b̄ ā0 b b b b̄ ā0 b b b b̄ ā0 b b b b̄ ā
0000 c 0 b 0 b b̄ ā b b 0 b b̄ ā b b 0 b b̄ ā b b 0 b b̄ ā b b 0 b b̄ ā b
00000 c b b 0 ā b b̄ b b 0 ā b b̄ b b 0 ā b b̄ b b 0 ā b b̄ b b 0 ā b b̄
b b̄ ā0 b̄ b̄ c 000000 b b b b̄ ā b b̄ ā0 b̄ b̄ 0 b̄ b̄ b̄ b a b̄ b a0 b b
b̄ ā b b̄ 0 b̄ 0 c 0000 b 0 b b̄ ā b b̄ ā b b̄ 0 b̄ b̄ 0 b̄ b a b̄ b a b̄ b 0 b
ā b b̄ b̄ b̄ 000 c 000 b b 0 ā b b̄ ā b b̄ b̄ b̄ 0 b̄ b̄ 0a b̄ b a b̄ b b b 0
0 b̄ b̄ b̄ b a000 c 00 b b̄ ā0 b̄ b̄ 0 b̄ b̄ b̄ b a b̄ b a0 b b 0 b b b b̄ ā
b̄ 0 b̄ b a b̄ 0000 c 0 b̄ ā b b̄ 0 b̄ b̄ 0 b̄ b a b̄ b a b̄ b 0 b b 0 b b̄ ā b
b̄ b̄ 0a b̄ b 00000 c ā b b̄ b̄ b̄ 0 b̄ b̄ 0a b̄ b a b̄ b b b 0 b b 0 ā b b̄
b b̄ ā0 b̄ b̄ 0 b̄ b̄ b̄ b a c 000000 b b b b̄ ā b̄ b a0 b b b b̄ ā0 b̄ b̄
b̄ ā b b̄ 0 b̄ b̄ 0 b̄ b a b̄ 0 c 0000 b 0 b b̄ ā b b a b̄ b 0 b b̄ ā b b̄ 0 b̄
ā b b̄ b̄ b̄ 0 b̄ b̄ 0a b̄ b 00 c 000 b b 0 ā b b̄ a b̄ b b b 0 ā b b̄ b̄ b̄ 0
0 b̄ b̄ b̄ b a b̄ b a0 b b 000 c 00 b b̄ ā0 b̄ b̄ 0 b b b b̄ ā0 b̄ b̄ b̄ b a
b̄ 0 b̄ b a b̄ b a b̄ b 0 b 0000 c 0 b̄ ā b b̄ 0 b̄ b 0 b b̄ ā b b̄ 0 b̄ b a b̄
b̄ b̄ 0a b̄ b a b̄ b b b 000000 c ā b b̄ b̄ b̄ 0 b b 0 ā b b̄ b̄ b̄ 0a b̄ b
b b̄ ā0 b̄ b̄ b̄ b a0 b b 0 b̄ b̄ b̄ b a c 00000 b b̄ ā0 b̄ b̄ 0 b b b b̄ ā
b̄ ā b b̄ 0 b̄ b a b̄ b 0 b b̄ 0 b̄ b a b̄ 0 c 0000 b̄ ā b b̄ 0 b̄ b 0 b b̄ ā b
ā b b̄ b̄ b̄ 0a b̄ b b b 0 b̄ b̄ 0a b̄ b 00 c 000 ā b b̄ b̄ b̄ 0 b b 0 ā b b̄
0 b̄ b̄ b̄ b a0 b b b b̄ ā b̄ b a0 b b 000 c 000 b̄ b̄ b̄ b a b b̄ ā0 b̄ b̄
b̄ 0 b̄ b a b̄ b 0 b b̄ ā b b a b̄ b 0 b 0000 c 0 b̄ 0 b̄ b a b̄ b̄ ā b b̄ 0 b̄
b̄ b̄ 0a b̄ b b b 0 ā b b̄ a b̄ b b b 000000 c b̄ b̄ 0a b̄ b ā b b̄ b̄ b̄ 0
b b̄ ā0 b̄ b̄ 0 b b b b̄ ā b b̄ ā0 b̄ b̄ b̄ b a0 b b c 000000 b̄ b̄ b̄ b a
b̄ ā b b̄ 0 b̄ b 0 b b̄ ā b b̄ ā b b̄ 0 b̄ b a b̄ b 0 b 0 c 0000 b̄ 0 b̄ b a b̄
ā b b̄ b̄ b̄ 0 b b 0 ā b b̄ ā b b̄ b̄ b̄ 0a b̄ b b b 000 c 000 b̄ b̄ 0a b̄ b
0 b̄ b̄ b̄ b a b b̄ ā0 b̄ b̄ 0 b̄ b̄ b̄ b a0 b b b b̄ ā000 c 00 b̄ b a0 b b
b̄ 0 b̄ b a b̄ b̄ ā b b̄ 0 b̄ b̄ 0 b̄ b a b̄ b 0 b b̄ ā b 0000 c 0 ba b̄ b 0 b
b̄ b̄ 0a b̄ b ā b b̄ b̄ b̄ 0 b̄ b̄ 0a b̄ b b b 0 ā b b̄ 00000 ca b̄ b b b 0
b b̄ ā0 b̄ b̄ b b̄ ā0 b̄ b̄ b̄ b a0 b b 0 b̄ b̄ b̄ b a0 b b b b̄ ā c 00000
b̄ ā b b̄ 0 b̄ b̄ ā b b̄ 0 b̄ b a b̄ b 0 b b̄ 0 b̄ b a b̄ b 0 b b̄ ā b 0 c 0000
ā b b̄ b̄ b̄ 0 ā b b̄ b̄ b̄ 0a b̄ b b b 0 b̄ b̄ 0a b̄ b b b 0 ā b b̄ 00 c 000
0 b̄ b̄ b̄ b a0 b̄ b̄ b̄ b a0 b b b b̄ ā b̄ b a0 b b b b̄ ā0 b̄ b̄ 000 c 00
b̄ 0 b̄ b a b̄ b̄ 0 b̄ b a b̄ b 0 b b̄ ā b b a b̄ b 0 b b̄ ā b b̄ 0 b̄ 0000 c 0
b̄ b̄ 0a b̄ b b̄ b̄ 0a b̄ b b b 0 ā b b̄ a b̄ b b b 0 ā b b̄ b̄ b̄ 000000 c


6.2 A Recursive Method

In this section, we will apply the recursive constructions employed in
the previous chapter. To this end, note that every q(1)-suitable family of
matrices is also q(k)-suitable, for any k. We observe the following immediate
results.

Proposition 6.7. Let q =≡ 5 mod 8 be a prime power. Then, for every
non-negativem and n, there is a AACOD(2qm(q2n−1)/(q−1); (2qm, 2q2n+m−1);
(2qm, 2q2n+m−1)).

PROOF. Using the recursion of Proposition 5.1 to define Am and Bm with
base case A0 = B0 = [1], and taking Ã = aAm, B̃ = bBm, C̃ = cAm, and
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D̃ = dBm in Proposition 6.5(vi), we arrive at the required pair of matrices.
Q.E.D.

Proposition 6.8. Let q be an odd prime power. If q ≡ −1 mod 4, then,
for every non-negative m and n, there is an
OD(2qm(q2n − 1)/(q − 1); qm, qm, q2n+m−1, q2n+m−1); while if q ≡ 1 mod 4,
the design is complex.

PROOF. Use the recursion of Proposition 5.1 to define Am and Bm with
base case A0 = B0 = [1], and taking A = aAm, B = bAm, C = cBm, and
D = dBm in Theorem 6.1. Q.E.D.

The following is an immediate consequence of Proposition 5.1 and The-
orem 6.1.

Proposition 6.9. Let q and p be odd prime powers where q ≡ 5 mod 8, and
let m, n, and d be non-negative. Then there is a CW(2pnqm(q2d−1)/(q−1)).

For the following result, assume the conditions of Theorem 6.1.

Theorem 6.10. Let q ≡ 1 mod 4 be a prime power, and let {X;Y } be an
amicable q2d−1

(1) -suitable family of matrices of order n, with entries from the

set {0,±x1, . . . ,±xρ}, and with ordinate of suitability
∑
six

2
i . Then, for ev-

ery non-negativem, there is a COD(2nqm(q2d−1)/(q−1); 2qms1, 2q
ms2, . . . , 2q

msρ).

PROOF. Define Am and Bm using the recursion of Proposition 5.1 with base
case A0 = X and B0 = Y . Then take A = B = Am and C = D = Bm in
Theorem 6.1. The result follows. Q.E.D.

Corollary 6.11. Let (A,B) be an AOD(n; (s1, s2, . . . , sρ); (t1, t2, . . . , tσ)).
Then, for every non-negative m and d, there is a
COD(2nqm(q2d−1)/(q−1); 2qms1, . . . , 2q

msρ, 2q
2d+m−1t1, . . . , 2q

2d+m−1tσ).

PROOF. Take X = A and Y = B in the theorem. Q.E.D.

We can obtain a result analogous to Theorem 6.10 as follows.

Theorem 6.12. Let q ≡ 1 mod 8 be a prime power, and let {X;Y } be a
q2d−1

(1) -suitable family of anti-amicable matrices of order n, with entries from

the set {0,±x1, . . . ,±xρ}, and with ordinate
∑
six

2
i . Then, for every non-

negative m, there is an OD(2nqm(q2d−1)/(q−1); 2qms1, 2q
ms2, . . . , 2q

msρ).

PROOF. Define Am and Bm using the recursion of Proposition 5.1 with base
case A0 = X and B0 = Y . Then take A = Am and B = Bm in Theorem
6.2. Q.E.D.
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Corollary 6.13. Let (A,B) be any AAOD(n; (s1, s2, . . . , sρ); (t1, t2, . . . , tσ)),
and let q ≡ 1 mod 8 be a prime power. Then there is an OD(2nqm(q2d −
1)/(q − 1); 2qms1, . . . , 2q

msρ, 2q
2d+m−1t1, . . . , 2q

2d+m−1tσ), for every non-
negative m.

PROOF. Take X = A and Y = B in the theorem. Q.E.D.

Corollary 6.14. Let q ≡ 1 mod 8 and p ≡ 5 mod 8 be prime powers. Then,
for every non-negative n, m, s, and t there is a COD(4pmqn(p2s − 1)(q2t −
1)/(p− 1)(q − 1); 4qnpm, 4qnp2s+m−1, 4q2t+n−1pm, 4q2t+n−1p2s+m−1).

PROOF. The result follows immediatly using Proposition 6.7. Q.E.D.

Using the results of this and the previous chapter, after running searches
on the derived parameters, we arrive at new orders of real Hadamard ma-
trices. Note that the order of each Hadamard matrix can be written in the
form 2tn, where t ≥ 2 and n ≡ 1 mod 2. We will adopted the convention of
writing this order as n(t). The new orders of Hadamard matrices are shown
below.

933(3) 1169(3) 1437(3) 1981(3)
2429(3) 2513(3) 2589(3) 2973(3)
3093(3) 3101(3) 3117(3) 3173(3)
3303(3) 3401(3) 3437(3) 3629(3)
3669(3) 3957(3) 4193(3) 4237(3)
4317(3) 4353(3) 4413(3) 4461(3)
4677(3) 4713(3) 4769(3) 4989(3)
5001(3) 5033(3) 5171(3) 5349(3)
5361(3) 5433(3) 5549(3) 5613(3)
5761(3) 5847(3) 5909(3) 5921(3)
5961(3) 6009(3) 6013(3) 6041(3)
6117(3) 6159(3) 6181(3) 6209(3)
6297(3) 6351(3) 6377(3) 6433(3)
6495(3) 6692(3) 6707(3) 6717(3)
6797(3) 6801(3) 6819(3) 6881(3)
6913(3) 6985(3) 6995(3) 7113(3)
7133(3) 7167(3) 7197(3) 7273(3)
7441(3) 7593(3) 7721(3) 7861(3)
8061(3) 8309(3) 8417(3) 8529(3)
8561(3) 8637(3) 8781(3) 8889(3)
8913(3) 8997(3) 9037(3) 9101(3)
9121(3) 9249(3) 9253(3) 9329(3)
9489(3) 9641(3) 9741(3) 9937(3)
9989(3)

Similarly, candidates for new orders of complex Hadamard matrices are
shown below.
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35(2) 47(4) 65(4) 67(5) 71(2) 77(2) 103(3)
111(2) 119(2) 131(2) 133(2) 143(4) 151(5) 155(2)
161(2) 163(3) 165(2) 167(4) 171(2) 179(8) 183(2)
185(6) 203(2) 207(2) 209(2) 213(2) 215(2) 219(2)
221(6) 223(3) 227(4) 235(3) 237(2) 239(4) 245(4)
247(2) 249(2) 251(6) 259(2) 263(2) 267(2) 269(8)
273(2) 275(2) 287(2) 291(2) 295(5) 299(4) 303(2)
305(8) 319(3) 323(2) 329(2) 333(3) 341(2) 343(2)
345(2) 357(2) 359(4) 369(4) 371(2) 383(2) 391(5)
393(2) 395(2) 403(2) 407(2) 413(2) 417(2) 419(4)
425(2) 431(6) 437(2) 443(6) 445(3) 447(2) 453(2)
455(2) 463(7) 467(2) 475(2) 483(4) 485(4) 487(5)
493(7) 495(2) 497(2) 501(2) 503(2) 513(2) 519(2)
523(7) 527(2) 533(2) 537(2) 539(4) 551(2) 553(2)
563(4) 567(2) 571(3) 573(2) 575(2) 581(2) 583(3)
585(2) 587(6) 589(2) 595(3) 603(2) 605(2) 611(6)
621(2) 623(2) 633(2) 635(2) 637(2) 655(5) 657(5)
665(2) 669(2) 671(2) 679(2) 683(2) 693(2) 695(2)
697(5) 699(2) 707(2) 711(2) 713(2) 719(4) 721(2)
723(2) 725(6) 743(4) 749(2) 751(3) 753(2) 755(2)
763(2) 765(2) 767(2) 771(2) 779(2) 781(3) 783(2)
787(5) 789(2) 791(2) 793(3) 795(2) 813(2) 815(2)
817(2) 825(2) 827(2) 831(2) 833(4) 837(2) 853(3)
857(4) 859(3) 863(4) 869(2) 873(3) 875(2) 887(6)
891(2) 893(2) 897(5) 899(2) 903(4) 905(4) 907(5)
909(4) 911(2) 915(2) 917(2) 919(3) 921(2) 923(4)
927(4) 933(2) 935(2) 941(6) 947(6) 949(3) 955(5)
959(2) 963(3) 965(4) 969(2) 971(6) 973(2) 979(5)
981(2) 983(4) 985(3) 989(4) 991(3) 993(2) 995(2)

6.3 Constant Weight Codes

We remind the reader that a code over a finite alphabet A, including
the symbol 0, is a subset C ⊆ A. The reader is referred back to §2.3 for the
relavent definitions. In this section, we will consider those codes in which
the alphabet A is G ∪ {0}, where G is some finite cyclic group. A code C
is called constant weight , if there is some k such that wt(x) = k, for every
x ∈ C. The simplex codes used to construct the BGW matrices in §3.3 are
an example of a constant weight code. We apply BGW matrices to these
codes in the following result.

Theorem 6.15. Let q be a prime power, and let S = 〈ω〉 be a finite cyclic
group such that |S| divides q − 1. Let g be the ω-circulant matrix with
first row (0, 1, 0, . . . , 0) of order n, and let G = 〈g〉. Take W to be any
BGW(v, k, λ;G). Then the rows of W form a constant weight (vn, vn, d)-
code where the following hold.

i. wt(x) = k, and

ii. d = min
{

2k, 2(k − λ) + λ(|S|−1)
n|S|

}
.

PROOF. Let X be the matrix obtained from W by setting all of the non-zero
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entries equal to 1. Then

XX∗ = k +
λ

n
(J − I). (6.1)

Consider W as an nv×nv matrix, and let x and y be any two distinct rows
of W . If x and y are from the same block row of the BGW W , then clearly

d(x, y) = 2k. Otherwise, consider the concatenation

[
x

y

]
. It follows that

0 0 1 0 ω ... ω|ω|−1 0
0 1 0 ω 0 ... 0 ω|ω|−1

λ
n︷ ︸︸ ︷

1 ω ... ω|ω|−1

1 ω ... ω|ω|−1
1 ... 1 ω ... ω ... ω|ω|−1 ... ω|ω|−1

ω ... ω|ω|−1 1 ... ω|ω|−1 ... 1 ... ω|ω|−2︸ ︷︷ ︸
λ(|ω|−1)
n|ω|

The result follows immediately. Q.E.D.

Corollary 6.16. Let 〈ω〉 = F×p , and let W be a BGW((qd+1 − 1)/(q −
1), qd, qd − qd−1) over F∗q such that n(p − 1) | q − 1. Taking v = (qd+1 −
1)/(q − 1), there is a constant weight (nv, nv, d)-linear code, where:

(i) w = qd, and

(ii) d = min
{

2qd, 2
(
qd − qd−qd−1

n

)
+ (qd−qd−1)(p−2)

n(p−1)

}
.

PROOF. We have used the fact that there are BGW’s with parameters
(qd+1 − 1)/(q − 1), qd, qd − qq−1) over a cyclic group of order q − 1 for every

prime power q. Since
∑|ω|−1

i=0 gi = 0, it follows that WW ∗ = kI; whence, W
is invertible. Q.E.D.

A cyclic code C is a code in which the cyclic shift of every code word is
also in C. As a final application, we have the following.

Theorem 6.17. If there is a cyclic (n − 1, d)-code over an alphabet of
cardinality s, where n is a prime power, then there is a constant weight
(nm−1, d′)-code of weight (n−1)nm−1 over an alphabet of cardinality s+1,
where d′ ≥ 2(n− 1)nm−2, for any positive integer m ≥ 2.

PROOF. The automorphism group of a cyclic (n− 1, d)-code admits a cyclic
subgroup of order n − 1 acting on the code by shifting the coordinate po-
sitions. Assume the alphabet is given by the set {1, 2, . . . , s}. Since n is
a prime power, there is a BGW((nm − 1)/(n − 1), nm−1, nm−1 − nm−2),
say W = [wij ], over this cyclic subgroup. Then the matrix [wijC] can
be regarded as a code with the required parameters over the alphabet
{0, 1, 2, . . . , s}. Q.E.D.

Theorem 6.15, in the case of binary, constant weight codes produces the
following interesting reproductions.
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Example 6.18. The following minimum bounds were reproduced for small
parameter constant weight, binary codes using the above theorem, where
we have used A(n,w, d) to denote the maximum number of words in an
(n, d)2-code of constant weight w:

A(8, 3, 4) ≥ 8 A(24, 7, 10) ≥ 24

A(12, 5, 6) ≥ 12 A(40, 9, 14) ≥ 40

A(15, 4, 6) ≥ 15 A(48, 7, 12) ≥ 48

A(16, 7, 8) ≥ 16 A(63, 8, 14) ≥ 63

A(20, 9, 10) ≥ 20 A(80, 9, 16) ≥ 80

A(24, 5, 8) ≥ 24

6.4 Notes

The results of this section were all novel constructions. In determin-
ing the new orders of real Hadamard matrices, the derived parameters were
compared with the tables found in Craigen, Kharaghani [CK07]. The puta-
tive orders for new complex Hadamard matrices displayed in the previous
section were compared to the tables found in Seberry, Yamada [SY92].

The values for A(n,w, d), reproduced in §6.3, are found in Brouwer
[Bro].
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Index of Terms

ω-circulant matrix, 41

affine geometry, 10

balanced incomplete block design,
5

derived design, 10
residual design, 10

block, 4
cardinality of, 4

code
constant weight, 80
cyclic, 81
simplex, 40

complex complinentary, 64
conference matrix, 17

distance
Hamming, 24
minimum of a code, 24

error-correcting code, 24
perfect, 25

flag, 4

generalized Bhakar Roa design,
37

derived part, 39
quasi-, 37
residual part, 39

generator matrix, 39
groups of symmetries, 49

Hadamard matrices, 17

Hadamard matrix
Butson, 33
generalized, 38
normalized, 23
quaternary complex, 34
quaternary unit, 61
quaternion, 66
unit, 31

Hermitian
transpose, 31

Hurwitz-Radon family, 36

incidence matrix, 4
incidence structure, 3

complement, 4
dual, 4
external, 4
internal, 4
substructure, 4

inter-positional balance, 37
intra-positional balance, 37

Kronecker product, 47

monomially equivalent, 38

orthogonal design, 35
amicable pair, 36
anti-amicable, 36
complex, 37

parallelism, 10
point, 4

replication number of, 4

q-suitability, 61
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ordinate of, 61

Radon arithmetic function, 36

resolution class, 10

resolvable, 10

affine, 10

signed permutation equivalence,
23

skew-type matrix, 65

weighing design, 16

weighing matrix, 17

balanced generalized, 38

Butson, 33

generalized, 35

quaternary complex, 34

unit, 31

weight

Hamming, 24

minimum of a code, 24





Index of Notations

Standard Set Notations

Z: The ring of integers.
Q: The field of rational numbers.
R: The field of real numbers.
C: The field of complex numbers.
T: The multiplicative group of unimodular complex numbers.
S+ = {s ∈ S | s > 0}, for S ⊆ R.
S− = {s ∈ S | s < 0}, for S ⊆ R.
Zn is the cyclic group of order n.

Matrices and Vectors

I: The multiplicative identity for a ring of square matrices.
J : The matrix whose entries are either a group identity or the multiplicative
identity of some ring.
R: The back identity; the matrix whose anti-diagonal consists of unity, and
whose off-diagonal entries are 0.
0: The vector whose entries are all 0.
j: The vector whose entries consist of either a group identity or the multi-
plicative identity of some ring.

Binary Operations

⊗ : The Kronecker product.
∗ : The Hadamard product.
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