Name of Applicant: Rudraksha Dutta Majumdar

Applicant's Email: r.majumdar@uleth.ca

Name of the Principal Investigator: Dr.Paul Hazendonk Email of the Principal Investigator: paul.hazendonk@uleth.ca Name of the Second Principal Investigator: Dr.Michael Gerken

Email of the Second Principal Investigator: michael.gerken@uleth.ca

Requested Dates: Monday September 5th to Wednesday September 7th

Requested Equipment:

3.2mm HFXY probe, shall work with proton, carbon and fluorine platforms, spinning not more than 20Khz. 2.5mm HFXY might be required too for the same work but not certain.

Sample Information:

Powdered asphaltene fluorinated with XeF2, molecular weight, density varies. Melting point(should be more than 200C) and freezing point don't apply as not certain, no major safety concern, might be a little electrostatic

Research Proposal:

1H decoupled 19F NMR(~ 1 hr)
19F decoupled 1H NMR (~1 hr)
1H to 13C CP, with and without 19F decoupling (~12hrs)
19F to 13C CP, with and without 1H decoupling(~12hrs)
1H to 13C CP, with double decoupling(~12hrs)
19F to 13C CP, with double decoupling(~12hrs)

Previous Work:

This is the first time I am using these fluorinated samples. Previous work was done on the non-fluorinated variety of the sample. Attaching the parameters and experiments of the previous session below, in the a powerpoint file which has all the parameters and spectra obtained in the last session.

Relevant Literature References:

- 1)Desando, M. A.; Lahajnar, G.; Ripmeester, J. A.; Ivan, Z. Fuel 1999, 78, 31.The low temperature oxidation of Athabasca oil sand asphaltene observed from 13C, 19F, and pulsed field gradient spin-echo proton n.m.r. spectra
- 2)Desando, M. A.; Ripmeester, J. A. Fuel 2002, 81, 1305.Chemical derivatization of Athabasca oil sand asphaltene for analysis of hydroxyl and carboxyl groups via nuclear magnetic resonance spectroscopy