Abstract: We shall place in a general context the following result recently (*) obtained jointly with Yuri Bilu (Bordeaux), Sanoli Gun (Chennai) and Florian Luca (Johannesburg).

Theorem. Let \(\tau(\cdot) \) be the classical Ramanujan \(\tau \)-function and let \(k \) be a positive integer such that \(\tau(n) \neq 0 \) for \(1 \leq n \leq k/2 \). (This is known to be true for \(k < 10^{23} \), and, conjecturally, for all \(k \).) Further, let \(\sigma \) be a permutation of the set \(\{1, \ldots, k\} \). We show that there exist infinitely many positive integers \(m \) such that

\[
|\tau(m + \sigma(1))| < |\tau(m + \sigma(2))| < \cdots < |\tau(m + \sigma(k))|
\]

The proof uses sieve method, Sato-Tate conjecture, recurrence relations for the values of \(\tau \) at prime power values.

EVERYONE IS WELCOME!

Visit the seminar web page at
http://www.cs.uleth.ca/~nathanng/ntcosemninar/