
Change a ULethQuestionBank Question Checklist
This checklist will guide you through the basic things that you will need to do in most cases if
you are modifying a problem from the ULethQuestionBank.

❏ If you want to add parts to the question, first check to see if the question contains
instructions for this task. If it does, they will be right under the keywords section near the
top of the file. Follow these steps to add your new questions; they are all listed at the
top of the file, but are also located in the sections they refer to if you scroll through the
file. Many of them also have examples to give you an idea of how you could add more
to the problem. If these steps are not present, or if you want to do other modifications to
the question, follow the checklist below.

❏ Change the description, date, author, and keywords in the .pg file to match the question.
This is important, because it makes it easier to search for your problems in the
WeBWorK library.

❏ Add or modify MathObjects to get the values required for your problem. Where possible,
try to give them useful names that will help you keep track of them. For example, if
you’re adding a new question to a problem that already has two questions, $answer3 or
$answerC are much more useful as names than $newAnswer .

❏ Change the problem text to accommodate the new values/questions that you’ve added
to the problem. If you’ve changed the names of existing MathObjects, you’ll have to
modify their names in the problem text so they display properly. Type everything
between the BEGIN_TEXT / BEGIN_PGML and END_TEXT / END_PGML tags to ensure
that it is processed properly.

❏ If using BEGIN_PGML / END_PGML
❏ LaTeX is entered as [`Your LaTeX here`] . Note that the marks next

to the square brackets are backticks: NOT apostrophes!
❏ MathObjects are entered as [$myMathObject] ; this includes if they are

being used inline with some LaTeX.
❏ Lists (e.g. lists of questions) should have an empty line between each

question. This will place each on a new line in the problem. You can use
uppercase/lowercase letters, roman numerals, or numbers to number the
questions, but keep it consistent! If you want to put something on a new
line, but keep it indented under the current question

(e.g. This line of text),

then put a line of empty space between it and the previous line (see
above), then put four spaces in front of it (not pictured).

❏ Code that needs to be evaluated within the text of the problem (e.g.
indexing a multidimensional array) is entered as [@ Some code @]* ;

this can also be entered within a LaTeX expression if you want the code’s
result to display in LaTeX. Where possible, though, you should run your
code outside of the solution text, store the results in MathObjects, and
then display these in the solution text.

❏ If using BEGIN_TEXT / END_TEXT
❏ LaTeX is entered as \(Your LaTeX here\) . Note that the marks next

to the parentheses are backslashes.
❏ MathObjects are entered as $myMathObject ; this includes if they are

being used inline with some LaTeX. In other words, they do not need any
special characters around them.

❏ Lists (e.g. lists of questions) should have a $BR (line break marker)
between each question. This will place each on a new line in the
problem. You can use uppercase/lowercase letters, roman numerals, or
numbers to number the questions, but keep it consistent!

❏ Code that needs to be evaluated within the text of the problem (e.g.
indexing a multidimensional array) is entered as \{ Some code \} ;
this can also be entered within a LaTeX expression if you want the code’s
result to display in LaTeX. Note that the marks next to the curly braces
are backslashes. Where possible, you should run your code outside of
the solution text, store the results in MathObjects, and then display these
in the solution text.

❏ Add answer blanks as needed.
❏ If using PGML, use [_____] , where each underscore represents one character

of width for the answer blank.
❏ If using PG, enter ans_rule(int) , where int is some integer that determines

how many characters wide the answer blank is.
❏ Set $showPartialCorrectAnswers

❏ $showPartialCorrectAnswers = 1 if you want to give feedback for
partially-correct answers.

❏ $showPartialCorrectAnswers = 0 if you don’t want to give feedback for
partially-correct answers.

❏ Add answer checkers as required. In general, this will just be
ANS($answer->cmp()); , where $answer is the name of whatever value you want to
compare against the student’s answer. If there are multiple answer blanks in the
problem, make sure that the answer checkers are in the same order as the blanks in the
problem. This ensures that each checker is checking the correct answer blank.

❏ Add your solution text. This is text that will be displayed to the students after the due
date. Change the solution text to accommodate the new values/questions that you’ve
added to the problem. If you’ve changed the names of existing MathObjects, you’ll have
to modify their names in the solution text so they display properly. Type everything
between the BEGIN_SOLUTION / BEGIN_PGML_SOLUTION and END_SOLUTION /
END_PGML_SOLUTION tags to ensure that it is processed properly.

❏ If using BEGIN_PGML_SOLUTION / END_PGML_SOLUTION

❏ LaTeX is entered as [`Your LaTeX here`] . Note that the marks next
to the square brackets are backticks: NOT apostrophes!

❏ MathObjects are entered as [$myMathObject] ; this includes if they are
being used inline with some LaTeX.

❏ Lists (e.g. lists of solution parts) should have an empty line between each
point. This will place each on a new line in the solution. You can use
uppercase/lowercase letters, roman numerals, or numbers to number the
solution parts, but keep it consistent! If you want to put something on a
new line, but keep it indented under the current solution part

(e.g. This line of text),

then put a line of empty space between it and the previous line (see
above), then put four spaces in front of it (not pictured).

❏ Code that needs to be evaluated within the text of the solution (e.g.
indexing a multidimensional array) is entered as [@ Some code @]* ;
this can also be entered within a LaTeX expression if you want the code’s
result to display in LaTeX. Where possible, though, you should run your
code outside of the solution text, store the results in MathObjects, and
then display these in the solution text.

❏ If using BEGIN_SOLUTION / END_SOLUTION
❏ LaTeX is entered as \(Your LaTeX here\) . Note that the

marks next to the parentheses are backslashes.
❏ MathObjects are entered as $myMathObject ; this includes if

they are being used inline with some LaTeX. In other words, they
do not need any special characters around them.

❏ Lists (e.g. lists of solution parts) should have a $BR (line break
marker) between each point. This will place each on a new line in
the problem. You can use uppercase/lowercase letters, roman
numerals, or numbers to number the solution parts, but keep it
consistent!

❏ Code that needs to be evaluated within the text of the solution
(e.g. indexing a multidimensional array) is entered as \{ Some
code \} ; this can also be entered within a LaTeX expression if
you want the code’s result to display in LaTeX. Note that the
marks next to the curly braces are backslashes. Where possible,
you should run your code outside of the solution text, store the
results in MathObjects, and then display these in the solution text.

❏ Check for common errors
❏ Make sure that all opening brackets have matching closing brackets (and vice

versa). There are a few exceptions to this rule (e.g. when writing intervals with
one closed endpoint and one open endpoint), but it’s still important to check that
you haven’t missed something critical.

❏ Check that you’ve used backticks `` to enclose any LaTeX within your problem
text (assuming it’s located within a BEGIN_PGML / END_PGML block) instead of

apostrophes ‘’. The backtick key is located below the Esc key on most
keyboards.

❏ Check for semicolons! All lines of code should end with a semicolon. This does
not include commented lines (lines that start with a # symbol), block lines (e.g.
BEGIN_PGML / END_PGML lines), or the problem/solution text (assuming it’s
within a block like the BEGIN_PGML / END_PGML block).

❏ Check that all MathObjects and Perl variables you are using have been properly
initialized. This means that if you use a value (say, a MathObject called
$answer that contains the question’s answer), there should be a line
somewhere earlier where you initialize that value (e.g. $answer =
random(1,10,1);). This also includes misspelled names; misspelling a name
will sometimes cause the question to crash, or may produce unexpected results
during computations. In other words, setup things before you use them, and
check your spelling!

