A Fourier Transform Spectrometer for Ground Testing of the
Herschel/SPIRE Instrument

Locke D. Spencer®, David A. Naylor®, Bruce M. Swinyard?, Asier A. Aramburu ?, Trevor R.
Fulton® Tanya L. Lim®, Samuel D. Ronayette’, and Ian S. Schofield®

®Department of Physics, University of Lethbridge, Alberta, Canada;
"Rutherford Appleton Laboratory, United Kingdom

ABSTRACT

The Spectral and Photometric Imaging Receiver (SPIRE) is one of three instruments on the European Space
Agency’s Herschel mission. A detailed understanding of the SPIRE instrument is essential for a successful
mission. In particular, it is important to characterize both the in-band spectral profile, and any out-of-band
spectral leaks, which would severely degrade performance. A test Fourier Transform Spectrometer (TFTS), with
its broad spectral coverage and intermediate spectral resolution, was selected for the spectral characterization
of SPIRE. The integration of the TFTS with the existing Ground Support Equipment of the Herschel/SPIRE
test facility at the Rutherford Appleton Laboratory imposed several mechanical, optical, electrical, and software
constraints. In this paper we describe the design and implementation of the TFTS, and present preliminary
results from its use in the SPIRE verification and performance tests.
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1. INTRODUCTION

The main scientific objectives of the Herschel mission are spectroscopy of star forming regions in our own and
nearby galaxies, and deep extragalactic and galactic imaging surveys.! Herschel will be the only space facility
dedicated to observing one of the last unexplored bands of the electromagnetic spectrum.? The Herschel telescope
has a 3.5 m primary mirror passively cooled to ~80 K. The Spectral and Photometric Imaging Receiver (SPIRE)
is one of Herschel’s three focal plane instruments. SPIRE consists of a three band imaging photometer and a
dual band imaging Fourier Transform Spectrometer (FTS). To achieve high sensitivity, SPIRE is cooled to ~11K
and the detector arrays operate at 300 mK.? The import ant features of SPIRE are summarized in Table 1.

The combination of a low emissivity, passively cooled telescope, the total absence of atmospheric emission,
and a cryogenically cooled payload will allow sensitive photometric observations. SPIRE is designed to operate
in the absence of an atmosphere and the SPIRE instrument itself is inside an evacuated cryostat during testing
to simulate space flight conditions. Outside of the cryostat, however, ground testing occurs under atmospheric
conditions. The test facility consists of a molecular laser to provide an accurate line source and a blackbody source
for beam profiles. A spectrometer was identified as an additional piece of test equipment required to determine
the spectral performance of SPIRE. The SPIRE test FTS (TFTS), with its broad spectral coverage, intermediate
and variable resolution, intrinsic wavelength and intensity calibration, and simplicity of integration was designed
for this task. The TFTS was provided by the University of Lethbridge Astronomical Instrumentation Group
(AIG), under contract to the Canadian Space Agency (CSA) as part of Canada’s official contribution to the
Herschel /SPIRE project.

The design of the TFTS is presented in Sec. 2. Pre-vibration verification testing is discussed in Sections 3
and 4 with results presented in Sec. 5. Section 6 discusses future test plans. More details of the current status
of the SPIRE instrument can be found elsewhere.*™®
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Parameter Photometer Spectrometer
Spectral Bands [pm] | 250, 300, 500 | 200 - 315, 315 - 670

Resolving Power 3 1000
Number of Pixels 43, 88, 139 19, 37
Field of View 4'x 8 2.6’ diameter

Table 1. Comparison of the Photometer and Spectrometer compo-
nents of SPIRE
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Figure 2. Herschel/SPIRE AIV facility equipment di-
agram including TFTS. The optical path between the
TFTS output port and the cryostat window are also in a
sealed enclosure to allow for humidity control. The area
shown is approximately 3.5m x 4m.

Figure 1. Herschel/SPIRE qualification TFTS with
Blackbody radiation source. The TFTS is in a sealed
enclosure to allow humidity control. Dimensions are 1m
x 0.7 m.

2. TEST FOURIER TRANSFORM SPECTROMETER DESIGN

Several performance requirements influenced the TFTS design. The baseline requirement of the TFTS is that
it provide a resolution of 0.5 cm™! (i.e., a resolving power greater than 1000 at 200 ym) and fit within mass
and volume constraints (see Table 2). The goal was to produce the highest possible resolution within these
constraints. These requirements fell into mechanical, optical, electrical, and software categories. We discuss each
of these in detail.

2.1. TFTS mechanical Constraints

The need for the TFTS was not addressed until after the Assembly Integration Verification (AIV) facility at
the Rutherford Appleton Laboratory (RAL) was already in place; this restricted the choice of the TFTS design.
Fig. 2 shows the SPIRE test facility layout. In addition to the bulky SPIRE cryostat, the laboratory includes
a telescope simulator, molecular laser, and blackbody calibration source, all mounted on several large optical
tables. Due to the TFTS’s location near the edge of a large optical bench there was a mass constraint. The
TFTS also needed to be in an enclosed volume to allow humidity control in the beampath. The TFTS outline
is shown in Fig. 1 and makes very efficient use of the space available.

2.2. TFTS Optical Constraints

In order to test the SPIRE instrument it is necessary to simulate a beam identical to that provided by the
Herschel telescope. This was accomplished by a telescope simulator constructed from four mirrors (three flat,
one powered), three of which are motorized. These mirrors are significantly smaller than the Herschel primary
mirror which is simulated (~30 cm vs. 3.5m diameter). A point source located at the input of the telescope



simulator can be focused on any detector by adjusting the motorized mirrors in such a way as to simulate the
curved field of the Herschel telescope. The pupil mask, with image located 2.64 m from the SPIRE focal plane,
reproduces the F/8.68 beam required by SPIRE. Thus any of the SPIRE bolometers can be illuminated by a point
source similar to that provided by the Herschel telescope optics. The Telescope simulator design is discussed in
greater detail in Collins et al, 2003.”

As shown in Fig. 1, the TFTS provides the telescope simulator with an F/8.68 beam by a series of powered
mirrors. The blackbody source is located at the focus of an F/2.33 collimating mirror (off-axis parabolic, focal
length 17.48 cm). The collimated beam enters the interferometer where it encounters the beamsplitter, and fixed
and moving mirrors. The beam exits the interferometer and after reflection off a plane mirror is brought to
a focus by an F/8 mirror (focal length 60 cm) which feeds the telescope simulator. An iris that is located at
this focus provides a field stop for the radiation that is modulated by the interferometer. The use of an off-axis
parabola, fold, and focal compression mirrors makes the most of the limited surface area of the optical table.

The TFTS employs a broadband, high-efficiency, intensity beamsplitter® identical to that used in SPIRE.
Throughput is a factor of 2 higher than it would be for the traditional polarizing beam dividers as there is
no sensitivity to the polarization of the incident radiation. Another feature of the TFTS is the beamsplitter
mount, which allows for rapid beamsplitter exchange while preserving the alignment. During initial setup a thin
Mylar beamsplitter is used for visible alignment of the interferometer itself, and also of the interferometer with
the telescope simulator. The optical alignment of the TFTS and telescope simulator requires the alignment of
fourteen optical components, a task made significantly easier working in the visible range.

2.3. TFTS Electrical Constraints

In Fourier transform spectroscopy, the interferogram, I(z), (where z is the optical path difference between the
interfering beams) is related to the source spectrum, B(c), (where o is the frequency in wavenumbers) by:

+oo
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This equation can be inverted to retrieve the spectrum.’ It is common practice to measure the interferogram
in equal increments of optical path difference, which allows use of the FFT algorithm. For the TFTS/SPIRE
system, the interferogram signal is recorded as a function of time, I(¢), and the time of the regular optical path
difference intervals, ¢'(z), is recorded independently. By combining I(t) and t'(z) it is possible to reconstruct
I(z) (spatial domain) and hence retrieve the spectrum, B(o) (spectral domain).

The TFTS employs a precision linear motion translation stage which eliminates pitch and yaw errors asso-
ciated with lead-screw type stages. The stage also provides positional information at the level of £10 nm by
means of a noncontact linear encoder and multiplier option (AEROTECH model ALS135-200). The encoder Po-
sition Synchronized Output signal (PSO) triggers time capture on the Digital Processing Unit (DPU) electronics,
whereby the time stamp is stored in a 64-slot, 32 bit FIFO. The TFTS was designed primarily for a rapid-scan
mode, in which the times at which the stage advances equal intervals of optical retardation are recorded, t'(z),
while the mirror scans at a constant velocity either towards or away from the beamsplitter (up and down scans,
respectively). A counter which increments at the DPU clock frequency of 312.5 KHz, and is synchronized with
the SPIRE instrument, is needed to allow for accurate interpolation.

o = 1(2) (2)

Equation 2 illustrates the interpolation of the time sampled interferogram signal, I(t), and the position
sampled optical retardation times, ¢'(z), to yield the interferogram, I(z). The DPU clock signal is part of the
SPIRE electronics, with which direct access was prohibited, hence a breakout box (see Fig. 3) was proposed
as a potential solution. The breakout box provides an interface between the SPIRE Detector Control Unit
(DCU) and SPIRE Digital Processing Unit (DPU) clock. The SPIRE and TFTS sections of the breakout box
are electrically isolated from one another to ensure that malfunctions in the TFTS cannot adversely affect the
SPIRE instrument. In addition to the DPU clock pulses, the breakout box also recognizes global electronics
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Figure 3. Block diagram outlining link between the TFTS, TFTS-CS, and SPIRE through the breakout box.

resets which allow the two clock counters , ¢t and ¢’ (i.e. the bolometer readout clock counter and the TFTS clock
counter) to be synchronized to within 100 ns, well below the packet time uncertainty for the bolometer readout
of 1 ps.t0

As a check of the breakout box assisted time synchronization the interferometer should return the same zero
path difference (zpd) position value independent of scan direction. Sec. 5.1 shows that preliminary data analysis
indicated that the zpd location reported for both scan directions was not the same. The difference between up
and down scan zpd’s is equivalent to an 80 ms time delay between reported bolometer signal values and stage
position values. The cause of this difference has been identified and the exercise served as a useful check to
ensure that the synchronization between the time sampled SPIRE bolometer signal and the TFTS stage position
time was functioning correctly.

2.4. TFTS Software Constraints

The TFTS Control Server (TFTS-CS) is a Windows 2000 based network server application that configures, con-
trols, and collects data from the TFTS. Communication via an Ethernet-based Local Areal Network (LAN) uses
ESA’s Electrical Ground Support Equipment (EGSE) data packet protocol. The TFTS-CS accepts instruction
packets, executes the instructions contained in the packets, and returns data packets if applicable. The software
is event driven, and multi-threaded, to perform background operations simultaneously - such as scanning and
housekeeping packet broadcasting. Specifically, separate threads of execution handle regular transmission of
housekeeping packets as well as performing long-duration functions such as scans and table motion. Inter-thread
communication is implemented with global variables, protected by critical section functions. Network activity,
or button presses, trigger the TFTS-CS. Critical interfaces for the TFTS-CS are shown in Fig. 3 and include:
EGSE router, Spacecraft Operating System (SCOS), and DPU counter electronics, all linked together through
the breakout box, and external hardware specific to the TFTS which is responsible for the position and time
capture.

Since there are 5 different arrays of detectors to be evaluated and characterized, the TFTS has been designed
for flexibility. Variable scan speed, sampling rate, and maximum optical path difference enable a wide variety of
spectral observation parameters (see Table 1).

3. TESTING OF THE SPIRE CRYOGENIC QUALIFICATION MODEL

Vibration testing is carried out to simulate the conditions the Herschel satellite will experience during launch.
Pre vibration tests provide a benchmark for comparison with post-vibration and future instrument testing.



Parameter Typical Range
Input F Number F/2.33 N/A
Output F number F/8.68 N/A
Resolution 0.0125 cm~! 0.0125 - 0.25 cm™!
Physical Dimensions 1m x 0.75m x 0.3m N/A
Nyquist Frequency 100 cm ! 10 - 50000 cm !
Mirror velocity 0.5 mm/s 0.01 - 5 mm/s
TFTS enclosure humidity 6 % 1-30%
Blackbody Temperatures 1200°C 150 - 1300°C
Mass ~100 kg N/A
2 see Eqn. 4

Table 2. Summary of SPIRE Test FTS Capabilities

Performance changes, if any, should be fully understood to ensure that the instrument has not been affected by
the vibration tests. The multiple detector arrays and test phases also imply a need for testing to be repeatable
and flexible. Ground based testing of the SPIRE instrument poses challenges in simulating the deep space
environment that gives SPIRE its observational advantages. A multi-stage Helium cryostat cools SPIRE to
the required temperatures (77K, 11K, 0.3K). Cryogenic qualification model (CQM) testing is comprised of two
stages, pre-vibration testing, and post-vibration testing. Volume limitations also pose an obstacle to instrument
verification. For current information that discusses more general aspects of SPIRE CQM verification testing
refer to Lim et al, 2004.*

Significant obstacles to CQM testing are the atmospheric conditions outside of the cryostat. The chief
obstacle caused by the atmosphere is the opacity in the SPIRE spectral band due to atmospheric water vapor.
Fig. 4 shows the atmospheric transmission of both the photometer (PLW, PMW, PSW) and spectrometer (SLW,
SSW) bands for a 5m path at various relative humidities under laboratory conditions.!! Only the PLW array
was available for CQM testing. The atmospheric transmission across the PLW band has fairly low opacity
with a strong water absorption line at 18.578 cm~!. This absorption line is useful for intensity and wavelength
calibration. The high transmission region between 19 and 24 cm ™! provides higher signal-to-noise data which in
turn allows reliable broadband phase correction. The PLW array is therefore seen to be a good choice for CQM
testing because of these simple atmospheric properties. Fig. 4 also illustrates the greater atmospheric opacity
for wavenumbers above 36 cm~!. Serious attempts at purging the atmospheric water vapour from the beampath
will be required to reduce opacity to an acceptable level for CQM testing of the short wavelength arrays.

3.1. Parameter Selection

During CQM testing, test parameter selection involved a compromise between different test goals. Four variables
are free to be manipulated to obtain the desired spectral properties: TEFTS stage velocity , TFTS position
sampling interval, hot blackbody temperature, and maximum optical path difference (opd;,qz)- Given the limited
amount of time allotted to the TFTS during the test campaign the fundamental trade off lies between signal-to-
noise and spectral resolution. In total 9 pixels were tested at a variety of scan speeds, resolutions, and blackbody
temperatures. Observing parameters are shown in Table 3. The choices in setting these parameters in the case
of the PLW array are discussed below.

3.1.1. Stage Velocity

The TFTS stage velocity is dictated by the bolometer rolloff frequency (5 Hz). The relationship between stage
velocity, spectral content, and the maximum interferogram frequency observed by the detectors, f in Hz, is given
by

f = 2vomas Hz (3)
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Figure 4. Atmospheric transmission at various rela-

tive humidities for the test facility FTS beampath of Figure 5. Array Structure for the Photometer Long
5.092 m.'! Humidities shown are (top to bottom) 1%, Wavelength (PLW) Array. Pixels tested in the pre-
10%, and 30%. 30% is easily achieved, 10% is a chal- vibration test campaign are shaded.

lenge, and 1% is very difficult to achieve.

where o4 x is the maximum frequency, in cm ™!, seen by the detector and v is the linear stage velocity in cm/s.

In the case of the PLW band, the highest frequency is on the order of 25 cm~! which dictates a stage velocity
no greater than 1.0 mm/s. A velocity of 0.5 mm/s was selected.

3.1.2. Sampling Interval
From information theory, the maximum observable or Nyquist frequency, on in cm™', is given by the equation:

1 -1
— _ 4
2Az em )

where Az is the optical sampling interval in cm. The stage position is sampled every 25 um of stage travel,
resulting in a Nyquist frequency of 100 cm~!. This value four times oversamples the PLW band and will twice
sample the shortest frequency in any SPIRE array. The stage is capable of sampling on a much finer level,
however, given the out-of-band rejection of the SPIRE instrument this is unnecessary.

ON

3.1.3. Spectral Resolution / Maximum Optical Path Difference
The Spectral Resolution is determined by the opd,,., and is given by:

1.207
Aoc=—"— em™! (5)
20pdmam
As mentioned above, there is a direct trade off between spectral resolution and signal-to-noise ratio. In the case
of the PLW array, the minimum required resolution, based on the absorption line width and desired band edge

profile resolution, is 0.3 cm~!.

3.1.4. Blackbody Scan Temperature

The signal-to-noise levels of the interferogram increase with blackbody temperature. As discussed in Sec. 5.3,
spectral measurements of the blackbody at two different temperatures, ideally widely spaced, are required to
determine the Spectral Responsivity. During the test campaign, the blackbody was operated at 1200°C and
950°C. This was a reasonable compromise in that both temperatures are well above ambient and yet a significant
difference exists between them.

To maximize the number of pixels that could be measured, it was decided to conduct low and full resolution
scans at two blackbody temperatures for the central pixel, and do low resolution scans at one blackbody tem-
perature (1200°C) on the other pixels to be tested (see Table 3). This allows more pixels to be tested and better
signal-to-noise in the given time.



Pixel | Stage Velocity [mm/s] | opdimaee [cm] | Az [pm] | BB*Temp. [°C] | Humidity [%] | Scan Pairs
A2 0.5 2 25 1200 7.8 6
A5 0.5 2 25 1200 7.8 6
A9 0.5 2 25 1200 7.0 6
C1 0.5 2 25 1200 10.0 6
C5 1.0 2 25 1200 10.5 60
C5 1.0 2 25 950 8.0 60
C5 0.5 34 25 1200 7.5 6
C5 0.5 34 25 990 8.7 6
C9 0.5 2 25 1200 2.6 6
E2 0.5 2 25 1200 12.0 6
E5 0.5 2 25 1200 6.0 6
E9 0.5 2 25 1200 6.0 6

& Blackbody Radiation Source

Table 3. TFTS Tests Performed during pre-vibration SPIRE CQM Verification

4. DATA ANALYSIS

CQM test data were extracted from the EGSE database using a Jython script that called Java routines from
the SPIRE Interactive Quick Look Analysis software package. The telemetry from the photometers, in the form
of a timeline, was written to one file, while nominal science data (mirror-position timeline) from the TFTS was
written to another file. Each file was written in the FITS format'? and conformed to the standard outline in the
University of Lethbridge Data Processing Toolkit (DPTK) Architecture Design Document (ADD).'3

The DPTK is a set of data processing routines written in the Interactive Data Language (IDL).'* The
processing pipeline begins by combining the timelines contained in the two FITS files. The combined timeline
is then subdivided into discrete software objects, with each object containing one scan. The data in each
scan timeline are then used to create a series of interferogram objects by way of interpolation as discussed in
Sec. 2. The interferograms are converted into spectra by application of standard Fourier spectroscopic techniques,
which consist of phase correction, optional apodization, and Fourier transformation.'>Phase correction can be
implemented in either the spatial or spectral domain. For low resolution scans, in which the interferogram is
measured out to equal distances on both sides of the zpd position, the phase correction is implemented in the
spectral domain. For high resolution scans, which lack this symmetry, phase correction is implemented in the
spatial domain. Optional apodization can be applied the the interferogram prior to Fourier transformation to
reduce the magnitude of the sidelobes of the instrumental line shape, albeit at the cost of lower resolution.'®
From the perspective of the DPTK, the end result is that a series of interferogram objects is transformed into a
series of spectrum objects.

5. RESULTS

Four main results arise from the TFTS CQM campaign: the performance of the TFTS, the comparison of the
observed spectrum with theory, a detailed analysis of the spectral responsivity of the central pixel, and the results
for all pixels with comparisons.

5.1. TFTS Performance

As mentioned in Sec. 2, preliminary data analysis indicated that the zpd location differed for the up and down
scans; the difference being equivalent to an 80 ms time delay between reported bolometer signal values and
stage position values. Since great lengths were undertaken to synchronize the TFTS and SPIRE clocks (less
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Figure 6. Observed (averaged) spectra from each pixel
for the pre-vibration CQM test campaign. Spectra are
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Figure 7. Simulated impulse response to a dirac-delta
function for the SPIRE spectrometer and photometer ar-
rays.

than 100 ns) it was clear that some additional delay had not been accounted for. It was quickly realized that
the time delay associated with the bolometer time constant and the detector electronics could be the cause.
Using subsystem information provided by JPL!® and LAM,'” the detectors and their electronics are modeled in
Laplacian space and the results for the photometer and spectrometer arrays are shown in Fig. 7. It is readily seen
that the 80 ms delay observed agrees with the expected impulse response of the PLW array, thereby validating
the SPIRE/TFTS clock synchronization.

The interferometric performance of the TFTS was validated using a molecular laser, a subsystem of the
SPIRE test facility. Formic acid has a lasing transition at a wavelength of 432.65 um (there are actually two
closely spaced lines at 432.63 and 432.67 pum of similar strength; this separation is well below the resolution of the
TFTS so a mean value was assumed). The molecular laser was filled to a pressure of ~0.2 mbar of formic acid;
the molecular laser was pumped by the 9R20 line of CO5. The CO, laser was operating in continuous flow mode
with a pressure of ~25 mbar. The optical power in the pump was on the order of ~40 W. The molecular laser
was tuned by adjusting the length of the resonant cavity. A pyroelectric detector was used to monitor the power
of the infrared signal by means of a beamsplitter placed in the output path of the laser. The exiting beam was
then directed towards the TFTS, and by means of a periscope mirror system injected into the TFTS. A Golay
cell was placed inside the SPIRE test cryostat and viewed the TFTS through the cryostat window and telescope
simulator. This Golay cell was then used to record an interferogram of the laser source. The pyroelectric detector
provided automatic gain control of the interferogram signal by monitoring variations in the laser power output.
The signal from both detectors was digitized and time stamped using a LabVIEW data acquisition system.'®

Figure 8 shows the excellent agreement between the measured instrumental line shape and theoretical line
shape given by sin(x)/x. With a knowledge of the sin(x)/x function it has been possible to determine the
wavelength of the laser line to a small fraction of the resolution of the TFTS. Great accuracy in the wings of
the sin(x)/x function validates the TFTS design. This shows that the TFTS and telescope simulator are not
apodizing the interferograms, nor are they introducing any significant distortions.

5.2. Predicted Spectra

The theoretical transmission spectrum of the TFTS must first be modeled to allow for comparison with experi-
mental observations. To be accurate, this modeling should include a full radiative transfer analysis of all optical
components from the blackbody, through the TFTS, and the optical path including the telescope simulator to
the entrance window of the cryostat. As mentioned previously, the water vapour in the atmosphere is prob-
lematic since it acts simultaneously as a source of absorption and emission in the optical path. This provided
the impetus for enclosing the beampath and purging the water vapour, however residual amounts remain. The
radiative transfer is further complicated in that the second input port of the interferometer corresponds to one of
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Figure 8. Instrumental Line Shape of the TFTS, telescope simulator, and cryostat window obtained by propagating a
laser through the test facility external to SPIRE. Information is shown for both high and low resolution scans. The inset
shows a magnified comparison of the TFTS lineshape and classical sin(x)/x function.

the two outputs in the classical Michelson interferometer design; in this case the path from the cryostat window
to the TFTS. In addition to the atmosphere there are six mirrors between the cryostat window and the TFTS
that act as ambient blackbody sources of unknown emissivity. These sources are not expected to alter the shape
of the spectral profile as measurements occur in the Rayleigh-Jeans region and are normalized as part of the
analysis. In addition, other detector calibration measures eliminate these uncertainties by using sources inside
the cryostat.* Therefore, to a first approximation, it was assumed that the theoretical spectrum is given by the
following relationship

S =F(SR)(n)(e™7)[BrAQ (6)

where F' is the filter profile, SR is the spectral responsivity, i is the combined warm mirror efficiency, By, is the
Plank function for the 1200°C blackbody source, e~7 is the atmospheric transmission, A is the detector area,
and ( is the detector solid angle. A is expected to be proportional to A? due to the single mode propagation.
The expected spectrum for a 1200°C blackbody source seen by the PLW array is shown in Fig. 10, which is
based on the assumption that the spectral responsivity is unity.

5.3. Detector Responsivity

Equation 6 is modified by k to account for radiation between the cryostat window and TFTS as mentioned

above.
S = F(SR)(n)(e ")[BrAQ — (7)

The negative sign indicates this spectral contribution originates from the second input port of the Michelson
interferometer. The mirror efficiency, 7, is assumed to be 0.83 as it represents the reflectivity of six room
temperature mirrors (0.97 each). The Spectral Responsivity, SR, can be determined by taking the difference
between two spectra (Eqn. 7) obtained at different blackbody temperatures. If external environmental conditions,
such as relative humidity, are constant, SR becomes:

S

SR = Fe B A — A

(8)
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Eqn. 7 calculated with Eqn. 8 using the spectral response
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Figure 12. Responsivites determined for central
pixel (C5) using both calculation methods (Equa-
tions 9 and 10).

SR = S5 9)
F(n)(e=7)(AQ)[Bp1 — Bya]
Eqn. 9 is used to determine the Spectral Responsivity for the central pixel of the PLW array. In order to measure
as many pixels as possible, the remaining pixels used only the 1200°C blackbody. It is not possible to solve for
SR using Eqn. 8 and only one blackbody temperature. Thus, another spectral responsivity approximation omits
the unknown k because the 1200°C blackbody signal-to-noise dominates any unknown spectral contributions.

. S
~ Fne~7[BrAQ]

SR (10)

Using the spectral responsivity determined through the two temperature method, equations 8 and 9 can be
solved for k. This unknown should represent the contributions to the spectra that are not accounted for in Eqn. 6.
The result of the calculation is shown in Fig. 13 with the flat room temperature blackbody source plotted in the
background (light grey). The unknown spectral contribution, k, is seen to be essentially flat and thus will not
change the shape of the spectral responsivity, as measurements occur in the Rayleigh-Jeans region.

5.4. Comparisons across PLW Array

As seen in Fig. 11, the spectral responsivities from different pixels are in general agreement. The low and
high frequency cutoffs are unvarying. Spectral profiles agree, however, the normalization factors are not fully
understood. Post-vibration CQM testing is expected to investigate this further.

6. CONCLUSIONS

The TFTS performance has been validated. The molecular laser measurements show that the TFTS exceeds
its design specifications. The basic SPIRE instrument function was verified. The operating range of the PLW
array matches well with the design criteria. Furthermore there is no evidence of any out-of-band spectral leaks.
The shape of the PLW array spectral responsivity is not yet fully understood. The cause of this has not been
determined, some factors associated with apodisation or multiple reflections have been eliminated due to the
tests performed with the laser. The spectra of all pixels are in general agreement with each other, however, the
profile shape and intensity variations are not yet fully understood.

Furthermore, the experience gained testing the PLW array allows us to predict, with some confidence, the
expected spectral profile from the testing of the other four SPIRE arrays.

The post-vibration test schedule is similar to the pre-vibration schedule, but will probe some areas further.*
The TFTS performance has been well established, so future spectral scans can concentrate on SPIRE internal



investigations and verifying more pixels. In addition to the pixels tested in the pre-vibration test campaign, the
post-vibration test will also observe performance of pixels B3, B7, D3, D7 (Fig. 5). The test Fourier transform
spectrometer has proven to be a valuable piece of test equipment in the SPIRE test laboratory.
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