
Instrumentation Control Using the Rabbit 2000 Embedded 
Microcontroller 

 
Ian S. Schofield*, David A. Naylor 

Astronomical Instrumentation Group, Department of Physics, University of Lethbridge,  
4401 University Drive West, Lethbridge, Alberta, T1K 3M4, Canada 

 
 

ABSTRACT 
Embedded microcontroller modules offer many advantages over the standard PC such as low cost, small size, low 
power consumption, direct access to hardware, and if available, access to an efficient preemptive real-time multitasking 
kernel. Typical difficulties associated with an embedded solution include long development times, limited memory 
resources, and restricted memory management capabilities. This paper presents a case study on the successes and 
challenges in developing a control system for a remotely controlled, Alt-Az steerable, water vapour detector using the 
Rabbit 2000 family of 8-bit microcontroller modules in conjunction with the MicroC/OS-II multitasking real-time 
kernel. 
 
Keywords:  Embedded processor, Rabbit, instrument control, MicroC/OS-II 

1. INTRODUCTION 
The Astronomical Instrumentation Group (AIG) of the University of Lethbridge’s Department of Physics has been 
designing instruments for use in infrared and (sub)millimetre astronomy for over twenty years, with an emphasis on 
Fourier transform spectroscopy.  Historically, these instruments have been driven by control software hosted on 
standard desktop personal computers (PCs). This approach has been highly successful, allowing for rapid and 
inexpensive system development using widely available software development tools and low cost, commercial off-the-
shelf hardware. 
 
In the fall of 2001, the AIG began work on a remotely controlled atmospheric water vapour detector called IRMA 
(Infrared Radiometer for Millimetre Astronomy).  IRMA mechanically consists of a shoebox-size detector system 
attached to an Alt-Az motorized fork mount, which allows it to point to any position in the sky, and is attached to the 
end of an umbilical cable, through which it receives its power and network connection.  When deployed, an IRMA unit 
will be mounted on each (sub)millimetre telescope antenna making up an antenna array, allowing it to measure the 
amount of precipitable water vapour in each antenna’s line of sight.  The resulting data will then be used to correct 
phase distortion contained in the signal data and thereby increase the angular resolution of the telescope.1  IRMA is 
being developed with the goal of performing phase correction for the Atacama Large Millimeter Array (ALMA), which 
will be the world’s most powerful ground-based telescope, when completed early in the next decade.   
 
In order to make IRMA a feasible instrument for the ALMA project, it’s hardware and software architecture has to meet  
the following requirements: 

• Stand-alone, outdoor operation under highly variable, high-altitude (5000 m) weather conditions: average 
temperatures at Chajnantor in 2003 ranged from –10oC to 15oC .2   

• Highly stable, real-time multitasking operating system with plentiful digital input/output (DIO) and serial I/O 
lines for instrument control and data acquisition. 

• Ethernet connection to transfer collected data. 
• Shoebox-sized detector compartment (38 cm x 22 cm x 18.5 cm), of which a small portion is available to install 

a computer board. 
• Power consumption of the entire IRMA system must not exceed amount of power produced by a modest-sized 

solar voltaic power generation system. 
• Low price for production of ~60 or more units. 

                                                           
* ian.schofield@uleth.ca; phone 1-403-329-2426; fax 1-403-329-2057; www.uleth.ca/phy/naylor/ 

http://@uleth.ca/
http://www.uleth.ca/phy/naylor/


 
 
An embedded processor was an obvious choice over a PC-based control and data-acquisition solution to meet these 
requirements.  After careful review of embedded control products, the Rabbit 2000 microcontroller was selected, having 
met these requirements, as well as offering an affordable, feature-rich software development package with customer 
support. 
 
This paper discusses our experience using the Rabbit Semiconductor’s Rabbit 2000 based microcontroller modules to 
perform IRMA’s control and data-acquisition, considering their strengths and weaknesses in relation to PC-based 
systems. The paper is structured as follows: The technical specifications of the Rabbit 2000 microcontroller modules are 
introduced in Sec. 2. The architecture and development of the hardware and software for IRMA is described in Sec. 3. 
General conclusions about the design of hardware and software with the Rabbit 2000 microcontroller modules are 
drawn in Sec. 4.  

2. RABBIT 2000 MICROCONTROLLER MODULES 
The Rabbit 2000 family of microcontroller modules come in a variety of configurations.  In essence, they all consist of a 
credit card-sized multi-layer printed circuit board containing a surface mounted Rabbit 2000 microprocessor, static 
random access memory (SRAM), flash memory, a 10 megabit/second Ethernet controller (in the network-equipped 
models) and two rows of DIO pins on the reverse side of the board.  IRMA uses two different models of Rabbit 
microcontroller modules: the network-equipped RCM2100 (in Fig. 1), used for handling communication and instrument 
control, and the RCM2010, used for controlling the Alt-Az mount.  Rabbit 2000 microcontroller modules can support as 
much as 1 megabyte of memory (equally divided between SRAM and flash memory), 40 DIO lines, and microprocessor 
clock speeds as high as 25 MHz.  Specifications for the RCM2100 and RCM2010 are given in Table 1. 

 
 

Fig. 1. Rabbit 2000-based RCM2100 Microcontroller Module (reverse and top sides). 
 

Rabbit 2000 microprocessors are descendents of the venerable Zilog Z-80/Z-180 architecture, from which they inherit a 
great degree of machine-level instruction compatibility with the Z80 and related processors, sharing a similar register 
layout, memory addressing modes and machine instructions.  The primary difference between the two processors is that 
the Rabbit’s instruction set is optimized for handling 16-bit operations, such as 16-bit arithmetic and memory 
manipulation, in order to make the processor more compatible with C language compilers. The Z80/Z180 instruction 
set, which does not have efficient 16-bit instructions, requires larger, more inefficient routines to perform similar tasks.  



Being an 8-bit microprocessor, the Rabbit 2000 can only directly access a 16-bit address space (64K), but through the 
use of extended memory, can access one megabyte of memory. 
 
FEATURE RCM2100 RCM2010 
Microprocessor 22 MHz Rabbit 2000 25.8 MHz Rabbit 2000 
Ethernet 10Base-T, RJ-45 None 
Memory: Flash 512K 256K 
Memory: SRAM 512K 128K 
DIO 40 Lines (grouped into five 8-bit 

ports, shared with 4 serial ports).  
Less lines available if networking 
used. 

40 Lines (grouped into five 8-bit 
ports, shared with 4 serial ports). 

Serial IO Four 5V CMOS-compatible 
Real Time Clock Yes 
Timers Five 8-bit timers and one 10-bit timer 
Connectors Two 2 x 20,  2 mm IDC headers 
Power 5 V, 140 mA 5 V, 120 mA 
Board Size 89 x 51 x 22 mm 58 x 48 x 13 mm 
 

Table 1. RCM2100 and RCM2010 specifications.3,4 

 
Flash memory is used to permanently store the executable code and any related static data, such as constants, tables or 
files, while the static RAM holds volatile data created during runtime. Thus, rabbit programs cannot be larger than the 
available flash memory. Although 512K (roughly equivalent to 50,000 C statements) may not sound like a great deal of 
memory, it is more than adequate for running serious control and data acquisition programs, because the Rabbit's C 
language compiler, Dynamic C, produces lean and efficient executable code.  Nonetheless, limited memory can be an 
issue when developing software for any embedded system, especially if the desired application needs to log data.  A 
major difference between developing software for the Rabbit 2000 and desktop computers is the fact that the 
programmer does not have available limitless memory or hard disk space. 

3. CASE STUDY: IRMA 
IRMA is a compact, remote controlled infrared radiometer, targeted for use in (sub)millimetre astronomy to correct 
phase distortion of incoming celestial signals caused by rapid variations of water vapour in the Earth’s atmosphere.  To 
be used in conjunction with a (sub)millimetre telescope antenna array, each IRMA unit will measure the amount of 
precipitable water vapour (pwv) in the column of atmosphere along each antenna’s line of sight.  These data allow to 
correct for phase errors contained in each antenna’s signal data, thus increasing the resolving power of the array.1 

3.1. IRMA Hardware 
Operationally, IRMA must perform three fundamental tasks: process commands from the operator, control the hardware 
components, and store data for retrieval.  Due to the amount of processing power involved in performing these tasks and 
the need to archive the collected data, it was necessary to divide IRMA’s computing tasks among three computers: the 
command processor (CP), master controller (MC) and Alt-Az controller.  The structure of the IRMA system is shown in 
Fig. 3. The IRMA CP interprets command scripts into low-level instructions, which it sends to the MC as binary 
command packets, receiving and storing any data returned by the MC.  Since IRMA has to store data in quantities that 
Rabbit microcontrollers cannot handle,  the CP is based on a PC running the Linux operating system.  Both the MC and 
Alt-Az controller are based on Rabbit microcontroller modules and are dedicated to hardware control, while the CP 
handles communication and data archiving. 
 



 
Fig. 2. Cut away view of IRMA in its Alt-Az mount.1  1) Cryo cooler  2) Shutter  3) MCT detector  4) Black body and 

heater  5) Reflective chopper  6) Input beam  7) Main board and IRMA master controller (behind detector box)   
8) Parabolic mirror  9) Power/comm. umbilical  10) Alt-Az controller  11) Cryo cooler controller  12) Power supplies   

 
The IRMA MC is based on a RCM 2100 Rabbit microcontroller unit that is linked to nine separate devices over DIO 
and serial channels.  Each of IRMA’s mechanical components are identified in Fig. 2.  Infrared (IR) radiation emitted 
by atmospheric water vapour is chopped with a 5-blade reflective chopper wheel rotating at 455 Hz to improve its signal 
to noise ratio.  A single notch on the wheel’s perimeter triggers analog to digital (A/D) conversions on a specific blade 
to eliminate uncertainties associated with blade to blade differences in emission/reflectance.  The notch signal is sent to 
the MC’s external interrupt line, which triggers an interrupt service routine to perform A/D conversions.  The chopper 
wheel, controlled by a Maxon 1-Q-EC digital motor controller, is fixed at a single rotation speed, and is enabled or 
disabled by the MC over a single DIO line.  The IR radiation is detected by a Mercury Cadmium-Telluride (MCT) 
photoconductive detector cooled to below liquid nitrogen temperatures (≤77 K) by a Hymatic NAX025-001 closed-
cycle Stirling cycle cooler, and is controlled by the MC over a 4800 bits/second (bps) serial connection.  The resulting 
AC signal from the MCT detector can be passed through 60 Hz or 120 Hz notch filters, which are selectable by two 
DIO lines to the MC. 
 
The analog signals are digitized with a Cirrus CS5534 24-bit Delta-Sigma 4-channel analog to digital converter (ADC), 
which the MC controls by sending and reading serial data over the ADC’s 4-wire DIO interface.  The ADC samples 
eleven separate analog sources: eight temperature sensors (fed into the ADC by means of an 8-channel analog 
multiplexer), one relative humidity sensor, one atmospheric pressure sensor, and the IR detector signal. 
 



The IRMA IR detector housing consists of a sealed aluminum box with a motorized retractable shutter. The shutter is 
controlled by means of a single DIO enable line and two DIO limit lines that indicate the shutter state.  Opening or 
closing the shutter is triggered by the MC clearing or setting the shutter’s enable line. Electronics on the IRMA main 
electronics board disables the motor once the shutter breaches either the open or closed optical limit switches.  On the 
inside surface of the shutter (facing the inside of the box) is a black body source, used for system responsivity 
calibration.  This black body is heated with a thin film electrical heating element.  The MC enables or disables the 
heater via a single DIO line.  Black body temperature is sensed by two of the eight temperature diodes distributed 
throughout the detector box. 
 
Accurate time and position data is provided by a GlobalSat ER-101 GPS board, which feeds NMEA-formatted GPS 
data strings every second over a 4800 bps serial link.  The MC reads the GPS in order to synchronize its own on-board 
real time clock (RTC) with the GPS time stamp. 
 
Two DIO lines are reserved to monitor over current conditions on the 12 and 24 V power supplies.  Although not used 
in the current IRMA model, it will be used in future versions.  

Command 
Processor

Linux PC

ALT-AZ
Rabbit RCM2010
(not networked)

IRMA script(s)
stored on HD

DAC

Motor

8K Encoder

Interrupt Line

DAC

Motor

8K Encoder

Altitude AzimuthSerial

DIO

Ethernet

IRMA operator
uploads scripts 

Commands destined 
for  (and returning 
From) the Alt-Az are 
relayed through the
master controller.  

115K master control -
Alt-Az serial channel 
(differential TTL)

Master 
Controller

Rabbit RCM2100
(networked)

Internet
10Base-T Ethernet LAN

Cryo

∆Σ ADC

Shutter

GPS

Chopper

Notch
Filters

Power
Monitor

Black
Body Heater

and downloads
data to IRMA
command 
processor.

Command 
processor receives
script containing
instructions for
scan.

Command 
processor interprets
script, converting 
each script state-
ment into an IRMA
instruction packet,
which is sent to the
master controller
for execution.

Data packets
returning to
command processor 

 
Fig. 3.  IRMA control software block diagram. 

 
The IRMA Alt-Az controller, based on a RCM2010 Rabbit microcontroller core, handles the Altitude-Azimuth mount’s 
motor control and communications functions.  Communication with the MC is carried over a 2-wire 115,200 bps serial 
connection using a simple ASCII string protocol with cyclic redundancy check error detection.  To increase reliability, 
the MC - Alt-Az serial link is implemented using a RS-485 differential TTL driver-receiver pair. 
 



The Alt-Az controller drives two Maxon EC167129 low-noise, 50W, brushless DC motors in order to articulate 
IRMA’s two-axis Alt-Az mount.  The Alt-Az processor controls each axis through an individual Maxon 1-Q-EC digital 
motor controller, allowing the Alt-Az to enable/disable each motor via a single DIO line.  To produce motor movement, 
the Alt-Az controller injects a voltage level, produced by a Maxim MAX5223 8-bit 2-channel serial digital to analog 
converter (DAC), to the motor control units’ speed input.  Motor speed, which is directly proportional to input voltage 
going into the motor control unit, is selected by the Alt-Az controller by writing a specific 8-bit value ranging between 0 
to 255 into the serial DAC.   
 
Axis position information is read by dual US Digital E6M 2048-line optical encoders, each located on their respective 
axes.  A dual-channel US Digital LS7266 quadrature counter chip interfaces the optical encoders to the Alt-Az 
controller.  Controlled over 8 DIO data channels plus 4 DIO control channels, the LS7266 enhances encoder resolution 
by 4 times when operated in quadrature mode, allowing positions to be resolved with 8192 encoder positions per 
revolution (approximately 2 arc minutes per step). 

3.2. IRMA Software 
IRMA must be able to handle external communications in parallel with data collection and Alt-Az positioning.  
Additionally, IRMA must ensure certain activities (namely data sampling) are executed at precise intervals regardless of 
the CPU’s workload, requiring that the IRMA software be multi-tasking and real-time.  The Rabbit software 
development system, Dynamic C5, provides a preemptive multitasking, real-time kernel, called MicroC/OS-II6, to 
develop real-time multitasking programs on the Rabbit.   
 
Preemptive multitasking involves a scheduler running in the background, invisible to the executing program, which 
divides processor time among a number of individual programs (or code blocks) called tasks. Each task is given a 
priority, which the scheduler uses to decide which task should execute at a given time out of a set of tasks waiting to be 
run. If a higher priority task is scheduled to run at a certain time and a lower priory task is executing, the scheduler will 
preempt the lower priority task (put it to sleep) and run the higher priority task instead. Once the higher priority task has 
completed executing, the scheduler will resume executing the lower priority process.  Being real-time, MicroC/OS-II 
will ensure that programs running under it do not violate user-defined time constraints, regardless how busy the 
processor is.  Hence, if a high priority task must trigger an A/D sample at some prescribed interval, the scheduler will 
preempt the currently running task to satisfy this requirement. 
 
Once IRMA’s functionality was identified, it was divided into three tasks, each having a particular priority level based 
on its ability to be preempted (see Fig. 4).  The task named “metronomeTask” triggers the data collection interrupt 
service routine (ISR) every 200 ms by enabling the external interrupt line mapped to the chopper notch. When enough 
samples have been collected to form a data packet, which occurs roughly every four seconds, the metronome task 
signals the job task to write the latest collected data over the network to the CP.  The black arrows emanating from the 
metronome task in Fig. 4 indicate that this task explicitly activates other tasks.   
 
The lowest priority task, called the dispatcher task, waits for commands from the CP, and processes them depending on 
their expected duration.  Short-duration tasks get serviced immediately while long-duration activities are passed to the 
job task, allowing the dispatcher to return to listening to the network for new commands.  The dispatcher task is not 
triggered directly by the metronome task because commands do not have critical timing requirements.  Rather, the task 
runs in any remaining time after all the higher priority tasks have executed.  It is critical to put a task to sleep whenever 
it needs to wait for some event to occur, thereby forcing a context switch, which causes the real time kernel to execute 
the next task of lower priority, if one is ready.  Following this sequence, eventually every task in the program will be 
allotted processor time to execute.  Figure 5 shows a timeline of each of the parallel running tasks in the IRMA MC 
software, demonstrating its preemptive multitasking behaviour 



metronomeTask
10 Hz data collection 

loop timer
High Priority

jobTask
Data collection 
& transmission

Medium Priority

dispatcherTask
IRMA command 

receiving & job dispatch
Low Priority

ISR: A/D 
Conversion

Highest Priority

Enable chop 
Interrupt every 
100 ms

Flag event emitted every 
1.9 sec, triggering data
packet transmission to
IRMA CP

Triggers A/D
conversion

Runs when no other task 
(or ISR) is executing

metronomeTask
10 Hz data collection 

loop timer
High Priority

jobTask
Data collection 
& transmission

Medium Priority

dispatcherTask
IRMA command 

receiving & job dispatch
Low Priority

ISR: A/D 
Conversion

Highest Priority

Enable chop 
Interrupt every 
100 ms

Flag event emitted every 
1.9 sec, triggering data
packet transmission to
IRMA CP

Triggers A/D
conversion

Runs when no other task 
(or ISR) is executing

 
 

Fig. 4.  IRMA master control software task structure. 
 
Lower priority tasks whose activity duration exceeds the current amount of slack time are pre-empted by high priority 
processes, then resume where they left off when the processor is again available.  The fact that preempted tasks can 
resume, remembering its state before being pre-empted, is a powerful feature of the real time kernel. Dynamic C’s 
default method of multitasking, which involves the use of costates, forces the programmer to write code to keep track of 
the state of each activity in each costate (costates are similar to tasks) using state machines, which, depending on the 
complexity of the program, can become very elaborate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.
 
Control software r
waiting for instruc
functions to anoth
software uses the M
priority task to ha
low-priority motio
requested, execute
Communication o
real time to the MC
 
The MicroC/OS-I
multitasking and r
that is missing in 

 

100 ms 
ISR
k 
Metronome Tas
 
 Job Task
k 
Dispatcher Tas
 Multitasking timeline of the IRMA task structure (Shaded blocks represent task activity). 

unning on the Alt-Az controller is analogous to the MC control software: it acts as a passive server, 
tions from the MC, executing short-duration commands immediately, and dispatching long-duration 
er task in order to perform communication and motion control in parallel.  Like the MC, the Alt-Az 

icroC/OS-II real-time kernel to handle multitasking.  The task structure consists of four tasks: a high 
ndle communication, a lower priority task to handle long-duration motion control requests, and two 
n control tasks for each axis.  The motion control tasks are created when a point-to-point movement is 
d for the duration of the movement, and are destroyed once the axes reach their destination.  

n the Alt-Az is handled in a high-priority task because it must provide axis position information in 
 when called upon. 

I kernel is available to the Rabbit developer as a Dynamic C library. In addition to preemptive 
eal-time functionality, the kernel provides a means to use dynamically allocated memory, a feature 
Dynamic C.  From a systems programming point of view, the style of code required to implement 



multiple tasks is similar to Win32 or UNIX threads, and less cumbersome than having to use Dynamic C’s other form 
of multitasking, called cooperative multitasking.    
 
Cooperative multitasking differs from preemptive multitasking in that its tasks, called costates, are not pre-empted by 
higher-priority tasks, but rather, yield program flow to other costates when it has finished its current activity.  The 
costate’s state (being the value of its variables and the identity of the last executed statement) is not automatically saved 
when it yields control to another costate, so explicit mechanisms, such as state machines, must be written into the code 
to account for this.   State machines can be implemented within a costate by breaking the program flow into discrete 
steps by means of a switch or if/else statement, where each step represents a certain state in the costate’s execution. 
When the costate comes into context (i.e., is yielded CPU time), it checks its state variable, jumps to the corresponding 
position in its code, executes to the end of its block of statements, increments its state variable, and yields control.  
Cooperative multitasking with costates works well in simple programs that perform multiple tasks at different time 
intervals, and can potentially be more efficient than preemptive multitasking. Due to IRMA’s complex program flow, 
cooperative multitasking was rejected, because the resulting code would have required building very complex state 
machines. 

3.3. IRMA Communication 
A significant proportion of the IRMA control software is devoted to handling messaging among the CP, MC and Alt-
Az.  IRMA uses a binary packet-based messaging protocol that can be used for serial or network communication, which 
consists of a data payload wrapped with a header describing the packet’s identity and payload size, and a footer 
containing the packet’s cyclic redundancy check (CRC) value, which the packet recipient uses to verify the packet’s 
integrity.  Timeout timers are used with every communication transaction, whether network or serial based, in order to 
handle possible communication errors, which if not handled gracefully, could bring the system to deadlock. 
 
The MC acts as a slave of the CP, thus the MC never initiates any communication, but reacts to commands sent by the 
CP.  When the CP sends a command to the MC, the MC first responds by issuing an acknowledgement packet, followed 
by a packet indicating the start of the requested activity.  A data packet is generated if the given command generates 
information, such as reading the ADC, and a final packet indicates that the requested activity has concluded.  Although 
the command protocol is verbose and consequently slower than transmitting commands and data directly, it is designed 
to give the operator maximum flexibility in tracing a command when problems arise during communication or 
execution of the requested activity.  Communication between the MC and the Alt-Az controller is performed using a 
simplified messaging scheme based on the CP – MC protocol, which eliminates the acknowledgement and status 
packets, but retains the CRC check in order to speed up the transaction time.  Since the serial messaging task polls the 
serial buffer every 100 ms, the round-trip time of the Alt-Az position read command ranges between 20 and 80 ms. 
 
IRMA communication is ultimately dependent upon the instructions provided by the operator.  Early in IRMA’s 
development, it was unclear what kinds of activity sequences IRMA was going to perform, so maximum flexibility in 
commanding the instrument was required.  This was achieved by constructing a set of primitive commands represented 
by a small scripting language with which to individually control IRMA’s hardware components.  Each statement in the 
scripting language, called “IRMAscript”, is converted by the CP into a binary command packet and sent to the waiting 
MC, which executes the action associated with the command packet, such as turning on the chop wheel motor or 
powering up the cryo cooler.  By grouping multiple commands into a single script, the operator can specify IRMA’s 
behaviour in a precise and flexible manner.  An effort was made to make IRMAscript easy to read and write by the 
operator, as well as provide mechanisms within the language to permit repetition, conditional flow control, variable 
assignment, pausing and file I/O.  A GUI-based script generation program has been created to expedite and simplify the 
generation of syntactically correct IRMA control sequences. 
 
It was originally planned that the MC receive, store and interpret incoming IRMA command scripts.  In order to 
expediate IRMA’s software development, these functions were offloaded onto the CP, which allowed the interpreter to 
be written in Perl, a rapid-development scripting language.  The CP, besides hosting the IRMAscript interpreter and 
data archiver, acts as IRMA’s user interface, whereby users can upload command scripts for immediate or future 
execution (using the UNIX scheduler). 
 



4. HARDWARE / SOFTWARE DESIGN CONSIDERATIONS 
Software development on the Rabbit-2000 platform using the Dynamic C compiler is in many ways similar to 
developing programs on desktop PCs.  Syntactically, Dynamic C is nearly identical to ANSI C, differing only in the 
way it defines libraries, as well as slight differences in data types (there are no double-precision floating point numbers, 
and the default integer size is 16 bits, rather than 32 bits).  Because of these similarities, it is not difficult to port 32-bit 
Windows or Linux code to the Rabbit, being comparable to porting DOS code to Windows.  For example, the ADC 
control code for IRMA, originally written as a Windows dynamic linked library (DLL), required only a day’s effort to 
port it to the Rabbit 2000 processor. The biggest difference between writing software on the PC and the Rabbit is that 
programs are not compiled on the same hardware that runs the program.  Instead, the source code must be cross-
compiled on one machine and then transferred to another for execution.  The process of transferring the executable is a 
major obstacle in the Rabbit development process, taking nearly three times longer than the time required to compile the 
program.  The IRMA MC software, being a moderately sized, non-trivial program of 145 kB, requires nearly 30 
seconds to load into the Rabbit 2000’s flash memory.  Taking the program transfer delay into account each time a 
software change must be made as the program is cumulatively built up and debugged, the length of time to build a 
program can quickly multiply, making Rabbit software development a lengthy and tedious affair. 
 
Dynamic C is the only high-level language compiler available for the Rabbit-based microcontrollers, and is produced by 
Rabbit Semiconductor’s parent company, Z-World.  Available only for Windows, Dynamic C has the look and feel of 
other GUI-based integrated development environments (IDE), and features a text editor, compiler, plentiful program 
examples, and source code for all of Dynamic C’s libraries.   Compiling and executing code is done in the same fashion 
as on other IDEs, except that compiled data must be transferred into the Rabbit controller before it can be run.  If the 
program is compiled in debug mode, simulated console I/O is available over the Rabbit programming cable, allowing 
the use of printf statements to write messages, and scanf statements to read keyboard I/O in a Rabbit program.  These 
commands are intended for debugging purposes, and are not available when the Rabbit controller is permanently loaded 
with the final version of the program.   
 
Code generated by the Dynamic C compiler, although efficient and small in size, is not as efficient as hand-written 
assembly code.  Routines that strobe the Rabbit 2000’s DIO lines execute nearly four times faster when written in 
assembly than code generated by the Dynamic C compiler.  Rabbit assembly language routines can strobe DIO at the 
same rate PCs can strobe lines on their parallel port.  The IRMA MC data collection ISR, which samples the IR signal 
plus one of IRMA’s meteorological channels upon receipt of an interrupt signal from the chopper notch, is written in 
assembly in order to execute with maximum speed.  Every moment spent in the ISR prevents all other tasks from 
executing, so ISRs should terminate as soon as possible.  As the Rabbit 2000 microprocessor is largely based on the 
Zilog Z-80/180 design and shares many of its opcodes, reference and tutorial resources available on the World Wide 
Web or in books can be applied to Rabbit assembly programming.  Dynamic C allows for embedding of assembly code 
within a C program, or vice versa.  From a memory standpoint, assembly language subroutines can only exist in the root 
(64kB) memory pool, as opposed to C functions, which by default are placed in the extended memory (up to 1 MB).   
 
Network communication plays a central role in IRMA’s operations, and was one of the major deciding factors in 
selecting the Rabbit platform, because of its strong networking support.  Because of the Rabbit 2000 CPU’s limited 
processing power, it can only handle data at one quarter the rate of a networked PC.  Connected to a traffic-free network 
using maximum size (1500 byte) Ethernet packets, the Rabbit, doing nothing else, can at best transmit  ~270 kB/s and 
receive ~220 kB/s over the network.  Under realistic conditions, where the Rabbit is on a busy network and performing 
various I/O and computational tasks, its network speed limitation is not a serious problem since a typical Rabbit 
application cannot generate data at rates that would overload its network transmission limits.  IRMA data collection 
scans typically generate around 500 bytes every 4 seconds.1   
 
It is possible to exhaust the non-volatile memory resources on a Rabbit microcontroller module in a short amount of 
time, if the program writer is not careful.  Since the Rabbit is a diskless system and relies on its flash memory chip for 
permanent storage, including storage space for its executable program, simulated disk file systems can be no larger than 
the remaining memory.  At most, a RAM or flash based file system are limited to 512kB.  Care must be taken to write 
to flash memory efficiently and sparingly, as the flash memory chips used on Rabbit 2000 microcontroller boards are 
only rated for 10,000 writes.  Dynamic C documentation recommends that data be buffered before writing to flash since 



writing a large block of data wears the flash unit as much as writing a single data point. The easiest way around this 
problem is to use a RAM-based file system, which, although it is not permanent, can tolerate unlimited writes.  The 
approach taken by the IRMA control software is to send data over the network to some other networked host.  The 
RAM/flash file system requires much attention to tedious, low-level detail that makes it far more complex to use than 
disk I/O on a desktop PC.  If large capacity, quickly accessible, scratch space is required in an application, using 
extended memory (xmem) arrays are easy to implement in Dynamic C, and are very efficient. 
 
The IRMA MC and Alt-Az units are both mated to their respective custom-designed circuit boards via the two header 
rows on the microcontroller unit’s reverse side.  Although it is possible to use a Rabbit microcontroller module as a 
stand-alone unit without any buffering of its DIO lines, it is not advisable because they are CMOS based, which makes 
them susceptible to electrostatic discharge damage.  Rabbit microcontroller modules are primarily designed to be 
plugged into custom-designed circuit boards for projects requiring computer processing and/or network connectivity.  
For simple control and data acquisition projects, prototyping, or where no electronic fabrication expertise / resources are 
available, it is easier to use a PC-based DIO card.  Rabbit Semiconductor sells a prototyping board to serve these 
purposes.  Due to the longer time required to write Rabbit-based software and build its interfacing electronics, it can 
potentially cost more to develop a Rabbit-based system than to build a PC-based system.  With these caveats in mind, 
using the Rabbit 2000 in a system may still be worthwhile if it fits into the system’s design requirements, and if PC-
level performance (speed, storage capacity) and versatility it is not expected. 

5. CONCLUSION 
Rabbit 2000 microcontrollers can be used effectively in complex instrumentation such as IRMA, which integrates 
custom-built electronics, mechanical components, and computer power. Through the Dynamic C compiler, the Rabbit 
software developer has available a rich set of libraries with which to perform networking, serial I/O, a diskless file 
system, and real-time preemptive multitasking. Although Rabbit microcontroller modules are inexpensive devices, 
development of control and data acquisition software can cost more than a PC-based project in terms of time and money 
due to its lengthy development process. In addition, the microcontroller modules need to be integrated with custom 
electronics and a power supply.  Programming the Rabbit 2000 is accompanied by a steep learning curve, as many of its 
services, such as networking and file system access, are programmed quite differently on the Rabbit 2000 than on 
desktop PCs.  The Rabbit 2000 platform is a minimal, embedded 8-bit controller, not a PC.  It would be unreasonable to 
expect it to perform like a PC.  Rather, it should be applied to those specific situations that require computational and 
communication functionality in the smallest possible space, using the least amount of power. Experience with three 
IRMA units from field tests at the Smithsonian Millimeter Array (SMA) at Mauna Kea, Hawaii, have confirmed the 
suitability of the Rabbit 2000 microcontroller family for this application. 

6. ACKNOWLEDGEMENTS 
The authors would like to thank the following people involved in the development of the IRMA project: B. G. Gom and 
G. J. Smith, for developing the IRMA concept and instrument design; R. R. Phillips, for work on IRMA’s detector and 
leading the project to completion; G. J. Tompkins, for designing the IRMA electronics.  Special thanks to P. Davis and 
T. R. Fulton.  D. A. Naylor acknowledges financial support from NSERC, ASRA and the University of Lethbridge.  

7. REFERENCES 
1. D. A. Naylor, B. G. Gom, “Remotely Operated Infrared Radiometer for the Measurement of Atmospheric Water 

Vapor”, in Infrared Technology and Applications XXVIII, Proceedings of SPIE, 4820, pp. 908-918, 2003. 
2. ALMA Site Characterisation Team, “Atacama Large Millimeter Array Weather Data”, 

http://alma.sc.eso.org/htmls/meteo.html, 2004. 
3. Rabbit Semiconductor, “The RCM2100 RabbitCore microprocessor core module”, 

http://www.rabbitsemiconductor.com/products/rcm2100/index.shtml, 2004. 
4. Rabbit Semiconductor, “The RCM2000 RabbitCore microprocessor core module”, 

http://www.rabbitsemiconductor.com/products/rcm2000/index.shtml, 2004. 
5. Z-World, Inc., Dynamic C TCP/IP User’s Manual, p. 59, Z-World, Inc., 2002. 
6. Micrium Inc., 949 Crestview Circle, Weston, FL, 33327, USA, www.micrium.com  
 

http://alma.sc.eso.org/htmls/meteo.html
http://www.rabbitsemiconductor.com/products/rcm2100/index.shtml
http://www.rabbitsemiconductor.com/products/rcm2000/index.shtml
http://www.micrium.com/

	INTRODUCTION
	RABBIT 2000 MICROCONTROLLER MODULES
	CASE STUDY: IRMA
	IRMA Hardware
	IRMA Software
	IRMA Communication

	HARDWARE / SOFTWARE DESIGN CONSIDERATIONS
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

