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Abstract

The Orion Molecular Cloud (OMC) is the nearest, and thus most studied, star forming

region to the Earth. To date, most of the studies conducted at submillimetre wavelengths

have focused on the spectral line analysis using high resolution heterodyne recievers. How-

ever, the role of dust, which is known to be important in the evolution of the interstellar

medium, can only be studied through its continuum emission. This thesis presents the first

results obtained using a Fourier Transform Spectrometer (FTS) at the James Clerk Maxwell

Telescope to study, simultaneously, the continuum and line components of emission on the

OMC.
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Chapter 1

Introduction

1.1 Overview

This chapter gives a brief introduction to star formation, followed by a discussion

of the composition and the structure of molecular clouds. The Orion Molecular Cloud

(OMC), the brightest such source at submillimetre wavelengths, is the focus of this thesis.

1.2 Star formation

Stars form in the interstellar medium (ISM) from collapsing clouds of gas and dust

[7, 8, 9, 10]. The temperature of these clouds lies in the range of 10 - 50 K. The temperature

and density are highest at the center of the cloud, where a new star will eventually form.

Under such conditions, the gravitational forces exceed the internal pressure of the cloud and

the part of the cloud collapses. The object that is formed at the center of the collapsing

cloud, and which will become a star, is called a protostar. Since the protostar is embedded
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in the cloud of gas and dust, it is difficult to detect at visible wavelengths, since these

wavelengths are heavily scattered. Since the temperature of the cloud gives rise to the

peak intensity of emission in the far infrared and submillimetre region of the electromagnetic

spectrum, according to Wien’s law, protostars can only be studied at these long wavelengths.

Upon maturation, the star will carve out a cocoon in the surrounding material at which

point it will become visible [8]. Long wavelength studies thus provide key information on

the star formation process and a window on how the Solar System itself was formed.

1.3 Gas and dust in the Interstellar Medium

In 1968, Spitzer [11] suggested that the ISM can be viewed in terms of dense, cool

clouds in pressure equilibrium, and a warm, thin intercloud medium. A year later, in

1969, Field, Goldsmith and Habing [12] developed a two-phase model of the ISM, based

on heating by the low energy cosmic rays, which includes a warm intercloud medium at

temperature of ∼ 10000 K which is approximately 10 % ionized. The second phase of the

model consists of cold clouds with temperatures less than 300 K. In 1977, the model was

refined further by McKee and Ostriker [13] to include the effects of super nova explosions.

In this model, there are three components. Most of the interstellar medium is composed of

hot (with temperature of ∼ 500, 000 K), low density of ∼0.03cm−3 medium (HIM), which

is moderately inhomogeneous [13]. Embedded in this medium are the cold (∼ 100 K) and

dense (∼ 40 cm−3), neutral clouds (CNM). Surrounding these clouds is the warm (∼8000

K) photoionized cloud corona, which occupies a larger volume then the cold gas but has

less mass [13]. The authors separated this phase into two regions: warm neutral medium
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(WNM), which is an inner region having a fractional ionization of ∼ 0.1, and an ionized

medium (WIM), which is an outer region with fractional ionization of ∼ 0.7.

The ISM consists of both gas and dust. The gas appears primarily in two forms:

Cold clouds of atomic or molecular hydrogen, and near hot young stars ionized hydrogen.

The clouds of cold molecular and atomic hydrogen are the material from which stars can

be formed if they become gravitationally unstable and collapse [10].

Interstellar dust grains play a major role in the composition and evolution of the

interstellar medium because the dust acts as a catalyst for molecule formation, such as

molecular hydrogen, H2O, CH4, and NH3. Dust particles range in size from about 1 nm

to 1 µm [7]. Radiation from cold dust is the primary source of continuum emission in

the ISM. The continuum emission varies with temperature and type of dust, and can be

expressed as [14]:

Sν = (NgMg)κ0

µ
ν

ν0

¶β

Bν(Td)Ω. (1.1)

Here, Sν is measured in Janskys (Jy) where 1 Jy = 10−26Wm−2Hz−1, κ0 (m2/kg) is the

dust emissivity at some reference frequency ν0 (Hz), β is the dust emissivity index, and

Bν(Td) (Wm−2str−1Hz−1) is the Planck blackbody function at frequency ν (Hz) for dust

at temperature Td, Ω is the solid angle, Ng is the dust column density (m−2) and Mg is the

mass of the dust grains (kg).

There are several pieces of evidence for the presence of dust grains in the ISM, the

most important of these are as follows:
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Depletion of elements

Relative abundances of chemical elements in the Sun have been assumed to be

typical of the Galaxy as a whole. It has been found, however, that the abundances of some

elements are greatly reduced in the cold clouds of the ISM. It has also been found that

the elements which are able to form refractory solids are highly depleted, which suggests

that elements that can form such solids are being removed from the gas [7]. There is a

strong correlation between the condensation temperature of the element being depleted and

the amount of depletion: the higher the condensation temperature of an element, the more

it will be removed from the gas phase [7]. For example, titanium is depleted by a factor

of more than a 1000, relative to the Sun, while oxygen is underabundant by a factor of 3

[7, 15].

Extinction

Extinction (the reduction of the intensity of light as it travels through the ISM)

means that there is an agent that is scattering or absorbing the star light [7, 10]. The

intensity of the star light after it has gone through a medium is defined by [7]

I = I0 exp

µ
−
Z l

0
αdl

¶
. (1.2)

Here, I0 is the initial intensity of the light, l is the distance the light has passed through

the medium and α is the extinction coefficient. α (m−1) is not constant of the medium but

depends on the physical conditions of the ISM. Dust grains are believed to be a principle

source of extinction in the ISM [7]. Extinction is measured by comparing the spectra of

stars having the same spectral type, for example O or B stars, one chosen to have little
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material between the star and the observer, and the other extinguished by dust along the

line of sight [7]. The amount of extinction can be measured by the differences in measured

light intensities [7]. Some of this difference can be attributed to the stars being at different

distances, but there will also be a difference in measured intensities due to extinction. The

two star intensities, I1 and I2, can be related to the difference in magnitudes, ∆m, by the

following equation [7, 15]:

∆m = −2.5 log10
I1
I2
. (1.3)

The typical extinction at visible wavelengths for a region in our galaxy is about

1 magnitude for a path length of 1 kpc [7].

Polarization

Starlight is, in general, linearly polarized by a few percent, with the amount of

polarization being proportional to the amount of the extinction [7]. In order to polarize

light, the interstellar grains cannot be spherical but must be elongated, and there must be

some degree of alignment of the elongated grains. If these two conditions are satisfied,

then radiation with electric vectors parallel to the longer axis of the grains will be more

extinguished than vectors parallel to the shorter ones, resulting in net polarization of the

radiation [7].

Scattered light

Our galaxy is filled with diffuse light that cannot be traced to a particular source.

The simplest explanation for this is that the light is being scattered by some agent. Since

scattering by atoms and molecules would be insufficient to account for the diffuse light seen,
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this provides support for the existence of interstellar grains [7].

Solid state spectral lines

There are several absorption lines in the infrared that are attributed to absorption

of radiation from background stars by foreground solid particles. If dust grains are hot,

they will emit, or absorb, radiation not only in continuum but also in spectral bands. At a

wavelength of about 3 µm, a strong absorption of background stars light is detected. Since

H2O ice would evaporate before it could radiate at a wavelength of 3 µm, it is thought that

silicates, which can withstand high temperatures, are the cause of this absorption [7].

It is clear from the indications listed above that dust plays a key role in the evolu-

tion of the ISM. Since dust particles are small, and generally found at low temperatures in

the ISM, dust can only be studied closely at the submillimetre wavelengths. Submillimetre

astronomy is one of the last windows of the universe to be open to investigation. This is

due largely to the fact that photons at these wavelengths have such small energy and the

complexity of the instrumentation required to study them.

Dust plays a key role in the evolution of the ISM. At submillimetre wavelengths,

the optical depth is much less than one so the dust emission is optically thin, which al-

lows for all the dust emission to be observed along the line of sight [14]. This fact is

useful in determining the mass of the cloud and other physical parameters such as column

densities[14, 16, 17]; however, the intensity of the dust emission depends on the temperature

of the dust and its emissivity, β, which depends on the composition and grain size of the

dust. One goal of this thesis is to determine the dust emissivity index, β, of Orion-KL,

one of the brightest regions in the OMC, but the effects of temperature need to be taken
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into account (equation 1.1). Currently the only means of estimating β from submillimetre

measurements uses dual band photometry, which requires a knowledge of the dust temper-

ature. As will be seen in chapter 5, this method is largely dependent on the assumed

dust temperature for which the variation in β can be very large. In this thesis, I present

the first estimates of the results of the dust emissivity, β, based on submillimetre spectro-

scopic measurements alone. The gas in the ISM can be studied through high resolution

spectroscopy of spectral line emission or absorption, while the dust can be studied through

low resolution measurements of continuum emission or absorption.

As mentioned earlier in this chapter, there is much evidence for the existence of

dust. Dust is known to be an important catalyst for the formation of a wide range of

molecules. The emissivity of the dust is expected to change during the evolution of the

ISM. For example, cold dust can accrete a mantle of ice, which decreases the emissivity.

It has been shown that the emissivity can have a wide variation, which is believed to track

the evolutionary stages of the Universe. Dust emissivity is an important diagnostic tool

for probing the evolution of ISM, protostars in particular.

This thesis presents a feasibility study for using a Fourier transform spectrometer

(FTS), with its variable resolution, to measurements of the continuum and line emission

from the interstellar clouds. The target chosen for this analysis is the OMC, the brightest

galactic source at the submillimetre wavelengths.
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1.4 The Orion Molecular Cloud

The Orion emission nebula, shown in figure 1.1, is the nearest star formation region

to the Earth (about 450 pc away). The nebula is visible with the naked eye as the middle

star in Orion’s "sword". Because of its close proximity to Earth and its brightness, it has

become a Rosetta stone for astronomers studying star formation. For example, the first

protostars were discovered in the OMC as were most of the 125 molecules discovered in the

ISM to date (Aug 2004) [18, 19]. The optical emission from the Orion nebula, also known

as M42, arises from the ultaviolet flux from the Trapezium cluster. The four brightest stars

of this cluster seen in the centre of figure 1.1 photo-ionize the surrounding nebula.

1.5 Thesis outline

This thesis addresses the applicability of Fourier transform spectroscopy at sub-

millimetre wavelengths to the study of the ISM. Chapter 2 introduces the mathematical

principles of FTS spectroscopy. Chapter 3 discusses the removal of noise spikes in the in-

terferograms caused by cosmic rays. Chapter 4 introduces several new apodizing functions

for FTS spectroscopy. Chapter 5 presents spectroscopic measurements obtained with an

FTS, of Orion-KL and Orion-S, the two brightest regions of the OMC, in the submillimetre

region shown in figure 1.2, . The chapter shows that it is possible to extract both the

continuum and line components of emission from the interstellar medium with an FTS.

And finally, chapter 6 outlines the future prospects for FTS spectroscopy at submillimetre

wavelengths.
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Figure 1.1: Orion Nebula image by John Bally (University of Colorado) taken with the
Kitt Peak National Observatory (KPNO) 4 meter telescope (National Optical Astronomy
Observatory)
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KL

S

Bar

Figure 1.2: Submillimetre Common User Bolometer Array (SCUBA) 850 µm map of Orion.
On the right, zoomed-in region of Orion KL and S [3].
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Chapter 2

Fourier transform spectroscopy:

An introduction

2.1 Overview

This chapter gives a brief overview of Fourier transform spectroscopy and the

underlying mathematical principles. The chapter includes a description of the Mach-

Zehnder FTS built by the Astronomical Instrumentation Group (AIG) at the University

of Lethbridge (U of L), headed by Dr. David Naylor, for use at the James Clerk Maxwell

Telescope (JCMT). The JCMT is the world’s largest submillimetre telescope which is

located atop Mauna Kea, Hawaii, widely regarded as the world’s premier astronomical

observing site.
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2.2 Fourier integrals

One of the techniques for analyzing periodic functions was developed by Jean Bap-

tiste Joseph, Baron de Fourier [20, 21] (1768-1830) which is now known as Fourier’s Theorem

[22]. This theorem states that a periodic function f(t) of period T, can be expressed as a

series of harmonic functions given by [22]:

f(t) =
A0
2
+

∞X
m=1

Am cosm2πν0t+
∞X

m=1

Bm sinm2πν0t, (2.1)

where the coefficients, Am and Bm, are given by

Am =
2

T

Z T

0
f(t) cosm2πν0t dt m = 1, 2, 3, ..., (2.2)

Bm =
2

T

Z T

0
f(t) sinm2πν0t dt m = 1, 2, 3, ....

Introducing negative values of m into equation 2.1 and expressing it in exponential form,

the expression becomes [23]:

f(t) =
A0
2
+
1

2

∞X
m=−∞

(Am − iBm)e
i2πmν0t (2.3)

=
A0
2
+

∞X
m=−∞

Cme
i2πmν0t (2.4)

where Cm = (Am − iBm)/2 which means that the amplitudes of the spectral components

are split between positive frequencies represented by positive values of m, and negative

frequencies represented by negative values of m.

The descrete representation given by equation 2.1 is replaced by the Fourier inte-

gral:

f(t) =

·Z ∞

−∞
(A(ν) cos 2πνt+B(ν) sin 2πνt) dν

¸
, (2.5)
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where the coefficients, A(ν) and B(ν), are computed using

A(ν) =

Z T

0
f(t) cos 2πνt dt, (2.6)

B(ν) =

Z T

0
f(t) sin 2πνt dt.

Inspection of equation 2.6 shows that under certain symmetry conditions these coefficients

are trivial. For example when the function f(t) is even, B(ν) = 0 for all ν, and its Fourier

series will contain only cosine terms, which are themselves even functions. In the same

way, when the function f(t) is odd, A(ν) = 0 for all ν, and its Fourier series will contain

only sine functions, which are themselves odd functions.

The fourier transform of f(t) is defined, in an exponential form, as follows [24, 23]:

F (ν) = F{f(t)} =
Z ∞

−∞
f(t)e−i2πνtdt, (2.7)

where F (ν) is called a Fourier transform of f(t). It is possible to recover f(t) by performing

the inverse Fourier transform of F (ν) in the following way:

f(t) = F−1{F (ν)} =
Z ∞

−∞
F (ν)ei2πνtdν. (2.8)

Equations 2.7 and 2.8 are called Fourier transform pairs [23]. In this case, time, t, and

frequency, ν, were used as Fourier transform variables. Another common Fourier transform

pair of variables are position (x) measured in cm, and wavenumber (σ), measured in cm−1.

In practice, the continuous Fourier transform pair given by equations 2.7 and 2.8

is replaced by the discrete Fourier transform pair [23]:

F
³ n

NT

´
=

N−1X
k=0

f(kT )e−i2πnk/N n = 0, 1, ..., N − 1, (2.9)
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where n and k are the integers, N is the total number of samples of time and T is the

sampling interval. The discrete inverse Fourier transform is defined as [23]

f(kT ) =
1

N

N−1X
n=0

F
³ n

NT

´
ei2πnk/N k = 0, 1, ...,N − 1. (2.10)

The next section shows how Fourier analysis can be applied to electromagnetic

radiation.

2.3 Fourier decomposition

Electromagnetic radiation can be represented as a transverse wave of orthogonal

electric and magnetic fields whose amplitude varies with time. This wave carries informa-

tion about the source generating it. If the frequencies and amplitudes that make up the

wave are known, then the source spectrum can accurately be modelled. The process that

separates a time-varying wave into its constituent frequencies is called Fourier decomposi-

tion [4]. Some examples are given below.

Figure 2.1 shows three cosine waves of unit amplitude, and frequency 10 Hz but

having different phases. The solid trace shows the cosine wave having zero phase, the

dash-dot trace shows the cosine wave having a phase shift of π/4, and the dot-dot trace

shows the cosine wave having a phase shift of π/2, which is of course a sine wave. The next

three figures show the complex Fourier transforms (FTs) of these three functions.

Figure 2.2 shows the Fourier transform of the cosine wave having zero phase and

it shows that only the real part of the FT is non-zero (because the cosine function is an

even function). While the original cosine wave has an amplitude of unity, its Fourier

transform yields an amplitude of 0.5. This is because the Fourier transform includes
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Figure 2.1: Three cosine waves with different phases. solid line - 0 phase, dash-dot line -
π/4 phase, dot-dot line - π/2 phase
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Figure 2.2: Fourier transform of the cosine wave of frequency 10 Hz and phase zero, shown
in figure 2.1. a) real part b) imaginary part
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Figure 2.3: Fourier transform of the cosine wave of frequency 10 Hz and phase π/4 shown
in figure 2.1 a) real part b) imaginary part
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Figure 2.4: Fourier transform of the cosine wave of frequency 10 Hz and phase π/2 shown
in figure 2.1 a) real part b) imaginary part
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negative frequencies terms also (equation 2.8), and this part is not included in the graphs.

There is another feature at −10 Hz with the same amplitude so the resultant amplitude of

the two features is simply the addition of the two, which is equal to unity. To explain this

mathematically, f(t) = A cos 2πν0t is the equation of the cosine form in figure 2.2, where A

is the amplitude of the wave and ν0 is the frequency in Hz. The amplitude of the spectral

components of this function is represented by the coefficients Am and Bm in the Fourier

series given by equation 2.2.

Am =
2

T

Z T

0
f(t) cosm2πν0tdt

=
2

T

Z T

0
A cos 2πν0t cosm2πν0tdt

=
2A

T

T

2
δm1 = Aδm1,

since
Z T

0
A cos 2πν0t cosm2πν0tdt =

T
2 δm1 [22]. Here, δm1 is the Kronecker delta function

whose value is 0 everywhere except at m = 1, where its value is unity. Coefficients Bm can

be caluculated in a similar way:

Bm =
2

T

Z T

0
f(t) sinm2πν0tdt

=
2

T

Z T

0
A cos 2πν0t sinm2πν0tdt

= 0,

since
Z T

0
A cos 2πν0t sinm2πν0tdt = 0 [22]. Including negative frequencies in equation 2.3,

it is easy to see that Cm = Am/2, since Bm is zero. This corresponds to the amplitude,

A, being split between positive frequencies, m = 1 and negative frequencies, m = −1.

Therefore, the amplitude at ν = 10 Hz is 0.5 and at ν = −10 Hz is 0.5.

Now if we consider the second function which has a phase shift of π/4, it is no
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longer symmetric about t = 0. In this case the Fourier transform, figure 2.3, shows that

the real and imaginary components are equal, having amplitudes of 0.35355 units. The

total amplitude is then given by the vector sum:
√
0.353552 + 0.353552 = 0.5. Again,

when account is taken of the negative frequencies the total amplitude is unity. Finally, by

shifting the cosine wave by π/2 radians we effectively create a sine wave, which, being an

odd function, has a non-zero imaginary component of amplitude 0.5.

All of the waves in the previous examples had the same frequency. Now consider

what happens when we add two cosine waves with amplitude A = 1 unit but different

frequencies of ν1 = 10 Hz and ν2 = 11 Hz.

x1 = A cos(2πν1t) (2.11)

x2 = A cos(2πν2t).

Since the two waves are close in frequency the combined wave exhibits the phenomenon of

beats. The superposition of x1 and x2 gives

x1 + x2 = 2A cos

µ
2π

µ
ν1 − ν2
2

¶
t

¶
cos

µ
2π

µ
ν1 + ν2
2

¶
t

¶
. (2.12)

The combined wave is seen to be a disturbance having a frequency that is the average of

the two frequencies ν1+ν2
2 , but with an amplitude that varies with time, as a cosine of the

difference between the two waves ν1−ν2
2 . This is shown in figure 2.5. The FT of this

function is shown in figure 2.6. It shows two features at the frequencies of the original

waves.

Finally, consider four waves having different frequencies, amplitudes and phases,
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Figure 2.5: The resultant waveform of the superposition of two cosines of frequencies 10 Hz
and 11 Hz, equation 2.6.
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Figure 2.6: The real components of the Fourier transform of the waveform shown in figure
2.5
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given by

x1 = cos(2πν1t) (2.13)

x2 = 0.8 cos(2πν2t− π

4
)

x3 = 0.5 cos(2πν3t− π

2
)

x4 = 0.2 cos(2πν4t− π

16
),

where ν1 = 5 Hz, ν2 = 12 Hz, ν3 = 14 Hz and ν4 = 20 Hz.

Combining these four waves leads to the function shown in figure 2.7. It is not

obvious from inspecting this figure how many components are involved. However, the

FT shown in figure 2.8 clearly shows the individual spectral components at frequencies

of 5, 12 and 20 Hz in the real domain and the spectral components in the imaginary

domain at frequencies of 12, 14 and 20 Hz. This shows that the original function is the

superposition of four sinusoids. Since the 5 Hz component only shows up in the real domain

the original component was thus a cosine function. Similarly the 14 Hz component, being

purely imaginary, represents a sine function. The other two components are complex and

represent sinusoids of different phases. The phases of these components can be determined

from the arctangent of the imaginary divided by the real component. The amplitudes of

the four functions can be determined as described above.

As discussed in chapter 1, spectra can consist of continuum or line, emission or

absorption. A more realistic spectrum is shown in figure 2.9. The line at 2.5 Hz is a

narrow emission line which occurs when atoms or molecules emit electromagnetic radiation

during changes from excited states to states of lower energy. On the right is an absorption

line at 6.5 Hz which occurs when radiant energy is absorbed by the medium through which
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Figure 2.7: The resultant waveform of the four cosine waves given in equation 2.7. These
waves have different amplitudes, frequencies and phases.

0 5 10 15 20 25
Frequency (Hz)

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

Am
pl

itu
de

0 5 10 15 20 25
Frequency (Hz)

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

Am
pl

itu
de

a) b)

Figure 2.8: Fourier transform of the waveform in the equation 2.7 a) real part b) imaginary
part
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Figure 2.9: A more realistic spectrum: a narrow emission line at 2.5 Hz and a narrow
absorption line at 6.5 Hz superimposed on a broad emission feature centered at 5 Hz.

it is passing. Both lines are superimposed on a broader emission feature centered at 5 Hz.

The Fourier components of such a spectrum are manifold.

FTS spectroscopy is a method of obtaining intermediate to high resolution spec-

troscopic measurements on the incident radiation field [4, 5, 25]. A Fourier spectrometer is

a multiplex instrument, which means that the detector simultaneously records the intensity

of the source at all wavelengths at all times. The FTS is a two beam interferometer which

operates on the principle of the light interference. The intensity of the interference fringes

depends on the optical path difference between the two beams of the interferometer. The

variation in the intensity of these fringes as a function of optical path difference is known
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Figure 2.10:

as the interferogram. Finally, the spectrum is computed from the Fourier transformation

of the interferogram.

2.4 The Michelson interferometer

The simplest form of a FTS is a Michelson interferometer [4, 22, 26] shown in

figure 2.10.

The Michelson interferometer works on the principle of amplitude division. Light

from a source enters the interferometer and it is collimated by a lens or mirror. The resulting

plane wave is then split into two equal amplitude waves by the beamsplitter. These waves
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are reflected back on themselves by two mirrors, one fixed and one movable. These reflected

two beams are recombined at the beamsplitter where they form two resultant beams, one

travelling back to the source and the other one to the detector. These recombined beams

interfere with each other at the detector to produce intensity variations that depend on the

optical path difference between the recombined beams; the optical path difference being

varied by the motion of the moving mirror. Different frequency components in the beam

will experience different phase shifts and therefore different levels of interference. When the

optical path difference is zero, however, all frequency components exhibit zero phase differ-

ence and constructive interference occurs simultaneously for all wavelengths; this position

is called the zero path difference (ZPD) position.

2.4.1 Monochromatic beam

Let us consider a monochromatic beam entering the interferometer. The beam is

divided into two beams by the beamsplitter. The electric fields describing these two beams

can be written as

E1 = E0e
iωtrmrbt

0e−2πiσx1 (2.14)

E2 = E0e
iωtrmrbt

0e−2πiσx2 .

In this equation, E0 is the amplitude of the incident electromagnetic wave of angular fre-

quency ω = 2πν; rm is the amplitude reflection coefficient of the mirrors, rb is the amplitude

reflection coefficient of the beamsplitter, t0 is the amplitude transmission coefficient of the

beamsplitter, and x1 and x2 are the optical path length travelled by the two beams respec-

tively. The total electric field at the detector is given by adding the two individual electric
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fields in the above equation

ET = E1 +E2 = E0e
iωtrmrbt

0(e−2πiσx1 + e−2πiσx2). (2.15)

The total intensity measured at the detector, known as the interferogram, is defined

as the square of the magnitude of the total electric field [4]

I(x1 − x2) = |ET |2 = 2E20RmRbT (1 + cos(2πσ(x1 − x2))), (2.16)

where Rm = r2m is the reflectance of the mirrors, R b = r2b is the reflectance of the beamsplit-

ter, T = t02 is the transmittance of the beamsplitter and x1−x2 is the optical path difference

which can be expressed as δ. In the case of an ideal interferometer, the beamsplitter reflects

and transmits 50 % of the incident light and the interferogram can be written as

I0(δ) ∝ B(σ) [1 + cos(2πσδ)] , (2.17)

where E20 = B(σ) is the spectrum, and σ is the wavenumber (cm−1) The interferogram is

seen to be composed of a constant (DC) term and a modulation term, which is given by

the cosine function.

2.4.2 Polychromatic beam

When the source contains more than one frequency, the resultant interferogram is

the superposition of the interferograms for each frequency, ie.

I0(δ) ∝
∞Z
−∞

B(σ) [1 + cos(2πσδ)] dσ. (2.18)

It is customary to neglect the constant (DC) component and express the interferogram as

I(δ) ∝
∞Z
−∞

B(σ) cos(2πσδ)dσ. (2.19)
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This is the cosine Fourier transform of the source spectrum B(σ). The spectrum can be

recovered by the inverse cosine Fourier transform

B(σ) ∝
∞Z
−∞

I(δ) cos(2πσδ)dδ. (2.20)

As discussed earlier, when the inverse cosine Fourier transform of an interferogram is taken,

in addition to the positive frequency spectrum B(σ), the negative frequency spectrum

B(−σ) is produced. The negative frequencies have no physical interpretation but they

play an important role when we want to transform back and forth between the interfero-

gram and spectral domains.

2.4.3 Non-ideal Fourier transform spectroscopy

All of the previous equations were derived assuming ideal conditions. In the real

world however, we have to consider non-ideal interferometers of finite length. The finite

length of an interferometer limits the maximum optical path difference, which in turn limits

the resolution. Furthermore, phase shifts are introduced that make the interferograms

asymmetric (phase shifts will be discussed later in this chapter). Interferograms are no

longer even functions but rather a mixture of even and odd functions and are analyzed using

the complex Fourier transform defined as [4]

B(σ) =

Z L

−L
I(δ)e−2πiσδdδ, (2.21)

where L is the maximum optical path difference and the resulting B(σ) will now be complex.
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2.5 Sampling the interferogram

In order to compute the spectrum from 0 to ∞ wavenumbers, the interferogram

would have to be sampled at infinitesimally small increments of optical path difference. In

practice, the interferogram is sampled at finite intervals of optical path difference. The

Nyquist sampling theorem states that in order to unambiguously reconstruct the spectrum

the interferogram must be sampled at twice the Nyquist frequency which is shown in the

following equation:

∆x =
1

2σN
. (2.22)

Here, ∆x is the optical path difference increment in cm and σN is the Nyquist frequency in

cm−1. If an interferogram is sampled at regular discrete path differences, the continuous

interferogram is multiplied by a repetitive impulse function which is an infinite series of

Dirac delta functions spaced at intervals 1/x, where x is the optical path difference in cm

[4]. The equation of this impulse function is given by equation 2.23.

III1/x(δ) =
1

x

∞X
n=−∞

∆
³
δ − n

x

´
. (2.23)

Here ∆ is the Dirac delta function and III1/x(δ) is the Dirac delta comb function, also

known as Shah function, expressed as a function of optical path difference. The Fourier

transform of a Dirac delta comb is another Dirac delta comb function [4] of period x instead

of 1/x shown in equation 2.24

IIIx(σ) = x
∞X

n=−∞
∆ (δ − nx) . (2.24)

One of the most important properties of Fourier transforms is that multiplication in one

domain is equivalent to convolution in the inverse domain and vice versa (section 4.2).
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Therefore, when the Fourier transform of the discretely sampled interferogram is taken,

this is equivalent to convolving the spectrum with the Fourier transform of the sampled

comb. The effect of this convolution is that the spectrum is repeated indefinitely. If the

bandwidth of the spectrum is 0 to σmax, then the period of the transformed comb must be

at least twice this maximum frequency, known as the Nyquist frequency, in order to avoid

aliasing.

If the sampling frequency was decreased so that signal was sampled at 1/σN in-

stead of 1/2σN , for example, the transformed spectra would overlap and some spectral

features would occur at incorrect frequencies. This phenomenon is called aliasing or folding

and it is shown in figure 2.11.

For example, if there is a spectral feature at σmax + σ, then another feature will

appear at σmax−σ. This situation must be avoided since in general it is no longer possible

to recover spectral information.

2.6 Resolution

In practice, interferograms can only be measured to finite maximum optical path

difference, L, determined by the length of the translation stage. This is equivalent to

multiplying the infinitely long interferogram by the top hat truncation function given in

figure 2.12.

This in turn is equivalent to convolving the entire spectrum with the Fourier

transform of the boxcar function, which is the sinc function shown in equation 4.5, more

generally known as instrumental line shape (ILS) function. When the spectrum consists of
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a)

b)

c)

d)

Figure 2.11: a) input spectrum, b) output spectrum, after proper sampling, c) input spec-
trum that exceeds the Nyquist frequency, d) output spectrum after improper sampling [4]

two closely spaced lines it can often be difficult to resolve them. There are many definitions

of resolution. Two common ones are based on the full width at half-max (FWHM) of the

ILS and the Rayleigh criterion [25, 27].

The FWHM criterion states that two individual lines are resolved when the spacing

between the lines is equal to or greater than the FWHM of the ILS. As will be shown in

section 4.2 the FWHM of a sinc function is 1.21/2L where L is the maximum optical path

difference. For example, figure 2.14 shows two sinc functions which are separated by

a frequency of 1/2L; it is obvious from the graph that these two lines are not resolved.

By comparison, figure 2.15 shows that when the two lines are separated by a frequency



30

     

Optical path difference (cm)

0.0

0.2

0.4

0.6

0.8

1.0
Am

pli
tud

e

-L L

Figure 2.12: Top hat function as a function of maximum optical path difference
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Figure 2.13: The Fourier transform of a top hat function, known as a sinc function.
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of 1.21/2L we are just able to discern that there are at least two features present. The

Rayleigh criterion [28] considers that two lines are resolved when the resultant curve has

a ∼20 % dip of the peak amplitude of the line, or in another words the resultant line

amplitude at the midpoint between the lines is 8
π2
times the peak amplitude . The Rayleigh

criterion is shown in figure 2.16 for the case of the two sinc2x ILSs. It can be seen that

this is also equivalent to the case in which the maximum of the one line falls on the first

minimum of the other [28].

The resolving power of a spectrometer is defined as [4]

R ≡ σ

δσ
. (2.25)

Since δσ is proportional to 1/2L as discussed above, it can be seen that the resolving power

is determined by the maximum optical path difference, L.

2.7 Jacquinot’s advantage [1]

The throughput of an FTS is defined as the product of the area of the input

light beam A (m2) and the solid angle Ω (str) contained within the beam; sometimes this

quantity is called the étendue or light grasp. The controlling factor for the throughput

is usually the most expensive component of the spectrometer; in the case of an FTS this

is the beamsplitter. All interferometers possessing circular symmetry (eg. FTS or Fabry

Perot interferometer) have significantly higher throughput or optical efficiency, compared

with dispersive spectrometers, like a grating spectrometer, where the areal component of

the throughput is determined by the narrow entrance and exit slits (see section 2.11.1).

The high throughput of the FTS is known as the Jacquinot advantage. As will be seen in
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1/2L

Figure 2.14: The resultant of two sinc functions of equal amplitudes separated by a frequency
of 1/2L. Features are unresolved in the resultant function

1.21/2L

Figure 2.15: The resultant of two sinc functions of equal amplitudes separated by a frequency
of 1.21/2L apart. One starts to discern the two component nature of the result.
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Figure 2.16: The resultant of two sinc2 functions centered 1/L cm−1 apart, with each of the
sinc2 functions shown as a black line.

section 4.3, while in principle one can increase the throughput by increasing the divergence

angle within the FTS this results in a natural apodization of the interferogram, which limits

the maximum attainable resolution.

2.8 Fellgett’s advantage [2]

In a dispersive spectrometer only a narrow range of wavelengths are measured at a

given instant. By comparison, in an FTS all source wavelengths are measured at all times.

This leads to a multiplex advantage also known as Fellgett’s advantage. The multiplex

advantage can be explained in the following way: Suppose we are interested in measuring

the spectrum between σ1 and σ2 with a resolution δσ (cm−1). The number of spectral
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elements, M , in the band is given by

M = (σ2 − σ1)/δσ. (2.26)

If a grating spectrometer is used then each small band of width δσ can be observed

for a time T/M where T is the total time required to scan the full spectrum from σ1 to σ2.

This means that the integrated signal received in a small band δσ is proportional to T/M .

If the noise is random and does not depend on the signal, then the signal noise should be

proportional to (T/M)1/2. Therefore, the signal-to-noise ratio for a grating spectrometer

is [27]

(S/N)G ∝ (T/M)1/2. (2.27)

On the other hand, an FTS measures all wavelengths at all times. So the inte-

grated signal in a small band δσ is proportional to T and the signal noise is proportional

to T 1/2. Thus, for an interferometer, the signal-to-noise ratio would be [27]

(S/N)I ∝ T 1/2. (2.28)

If the grating and an FTS have an identical throughput then the ratio of the S/N for the

two instruments can be written:

(S/N)I
(S/N)G

=M1/2. (2.29)

Since M is the number of spectral elements of width δσ, equation 2.29 indicates

that the interferometer has a much higher signal-to-noise ratio than a grating spectrometer.

Moreover, it should be noted that the throughput of an FTS is typically two orders of

magnitude larger than the grating, which leads to an even greater increase in signal-to-noise
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ratio. Advances in detector array technology allow grating spectrometers to observe entire

spectral ranges simultaneously; however, the FTS can use the same detector to observe

many spatial parts of the source so the gain is retained [27].

2.9 Phase correction

In earlier sections ideal interferometers were considered, which produce interfero-

grams that are real and symmetric, and thus whose spectrum is a cosine Fourier transform

of a symmetric interferogram. In this case, the sine transform is zero and the phase is also

zero. Practically, however, asymmetries are often unavoidably introduced into the interfer-

ogram, which result in the phase errors in the spectrum [29, 30, 31, 32]. If left uncorrected

these phase errors yield to errors in the positions, intensities and shapes of spectral features

because phase errors take the energy out of the real part of the spectrum and put it in the

imaginary part [4]. The spectral information from the imaginary part needs to be brought

back into real part of the spectrum. In order to recover the true spectrum, we must first

determine the phase error.

An ideal Fourier transform spectrometer produces a sampled interferogram de-

scribed by [4]

I(δn) =
NX
j=1

B(σj) cos 2πσjδn. (2.30)

Here, I(δn) is one of the samples of the interferogram taken at the optical path difference

of δn. In a non-ideal case, an interferogram must be written in a more general form to
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incorporate the asymmetries [4]

I(δn) =
NX

j=−N
B(σj)e

−i(2πσjδn+φtot(σj)), (2.31)

where φtot(σj) is the total phase shift. The presence of phase shifts means that the exponent

in equation 2.31 does not go to zero at zero optical path difference (ZPD) plus it has a

wavenumber dependence. The phase of a spectrum can be expressed as a polynomial of

wavenumber σ:

φtot(σ) = a+ bσ + cσ2 + dσ3 + eσ4 + ... (2.32)

This phase function can be represented as a linear combination of three physical components:

a component due to missampling the position of ZPD, a contribution due to the spectrometer

beamsplitter, and a contribution from other sources (e.g. detector or electronics). The

overall measured phase can therefore be expressed as:

φtot(σ) = φZPD + φBS + φOTHER, (2.33)

where φZPD = 2πσ∆x is the phase term that arises from missampling the ZPD position by

an amount ∆x, φBS is the contribution due to the beamsplitter, generally non-linear, and

φOTHER is the contribution due to all other sources (detector, pre-amplifier etc.).

These phase errors lead to asymmetries in the interferogram. The phase correction

method of Forman et al. [33] has been adopted. The key steps are described below:

Step 1: Extract the double-sided portion of the interferogram (i.e., equal distance

on both sides of ZPD),

Step 2: Perform a complex FT on the double-sided interferogram. It will return

both real and imaginary components,
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Step 3: Compute the spectral phase from:

φ(σ) = arctan

µ
Im(FT )

Re(FT )

¶
. (2.34)

Step 4: Fit a low order polynomial to the phase data, weighted by the amplitude

of the spectrum,

Step 5: Take the inverse FT of exp(−iφ(σ)) to get the phase correction function

(PCF) ie., PCF =
Z +∞

−∞
e−iφ(σ)e2πiσδdσ.

Step 6: Convolve the PCF with the original interferogram to generate a symmetric

phase-corrected interferogram, which can be subsequently analyzed to produce the final

spectrum.

Phase correction is implemented as part of the processing pipeline that has been

developed for use with the U of L FTS. Details of this are given in chapter 3.

2.10 Mach-Zehnder Fourier transform spectrometer

The FTS used to collect these data was built by Dr. Naylor’s group at the U of

L [34]. This FTS uses two broadband intensity beamsplitters in a Mach-Zehnder configu-

ration, which provides access to all four interferometer ports while maintaining a high and

uniform efficiency over a broad spectral range. The layout of this spectrometer is shown

in figure 2.17 and the laboratory view is shown in figure 2.18.

The interferometer is constructed on a damped optical breadboard. All mirrors

are made from uncoated diamond-turned aluminum [5]. Two flat mirrors (M1 and M2)

focus the beam at the first beamsplitter (BS1) for each of the two input ports. The reflected

and transmitted beams from the beamsplitter are collimated by spherical concave mirrors



38

Figure 2.17: A schematic of the University of Lethbridge Mach-Zehnder FTS. M1, M2 and
M5 are plane mirrors, M3 and M4 are powered mirrors, RT are the roof-top mirrors, and
BS1 and BS2 are input and output intensity beam dividers [5].
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Figure 2.18: Top and side views of the U of L Mach-Zehnder FTS in the laboratory [5].
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M3. These beams travel to roof-top mirrors (RT) which are placed back-to-back on the

translation stage, which provides a travel of 300 mm. This in turn provides a maximum

optical path difference between the interfering beams of 1.2 m. The optical path difference

multiplication factor of 4 provides a spectral resolution of 0.005 cm−1. The beam divergence

within the interferometer is designed to satisfy the Jacquinot criteria (RΩ = 2π) so that

the beam divergence, Ω, does not compromise the maximum attainable resolving power, R,

of ~104. Mirrors M4 focus the beam on the second beamsplitter (BS2), which then directs

the beam to a flat mirror M5 before it enters the detector dewar.

By using powered mirrors within the arms of the interferometer, the size of the

optical beam at the beamsplitter is minimized. Since the size of the beamsplitter is a limit-

ing factor of any FTS, this design is well suited for imaging Fourier transform spectroscopy

as evidenced by its adoption for the FTS under development for the SCUBA-2 camera [35]

and the SPIRE instrument on Herschel [36].

2.11 Comparison with other spectrometers

For completeness this section will compare and contrast FTSs with two different

spectrometers found in common use: a grating spectrometer and a Fabry-Perot spectrom-

eter. Comparing the FTS with these two spectrometers will give us some insight as to why

FTSs find use in astronomical applications.
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Figure 2.19: A schematic of a reflection grating having a groove spacing of a. Two rays
are shown incident at angle θi. The optical path difference between the two exiting rays
at diffracted at angle θm is AB-CD.

2.11.1 Grating spectrometer

A diffraction grating [22, 26, 37, 38] is made out of a large number of close and

equally spaced lines that are ruled on plane or concave surfaces. The diffraction gratings

can be ruled on a surface, be formed by replicating the ruled surface, or generated by

etching a suitably prepared coating as in a holographic grating. When monochromatic

light is incident on a grating surface, it is diffracted into discrete directions.

The entrance slit controls the field of the source and the throughput. The incident

light passes through the entrance slit and the collimating mirror collimates the beam so that
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the light rays are parallel when they reach the grating. The focusing mirror displays the

spectrum in the focal plane, and a portion of that spectrum passes through the exit slit and

reaches the detector. Figure 2.19 shows the geometry of a diffraction grating.

This figure shows a light ray of wavelength λ incident at an angle θi and diffracted

by a grating along angles θm. a is the groove spacing. The angles are measured from the

normal of the grating. The path difference between contributions from adjacent grooves to

a wave diffracted at angle θm is [22]

l = a(sin θi + sin θm). (2.35)

The path difference is denoted by AB - CD. The principle of interference says that

when this path difference equals an integer multiple of the wavelength of light, reflections

from adjacent grooves will be in phase and this will lead to constructive interference given

by the equation mλ = l, where m is an integer that represents the order of interference.

Combining these leads to the grating equation [22]

mλ = a(sin θi + sin θm). (2.36)

From the grating equation we can see that different diffracting orders overlap. For

example, if we have a line of 600 nm in the first order, it will be diffracted at the same angle

as a line of 300 nm in the second order or the line of 200 nm in the third order. If we have

two lines of wavelengths λ and λ+∆λ, and they coincide in successive orders, then we have

the following relationship

(m+ 1)λ = m(λ+∆λ). (2.37)

This wavelength difference, at which wavelength measured in one order coincides with a

slightly different wavelength λ + ∆λ observed in the next lowest order is known as free
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spectral range

(∆λ)fsr =
λ

m
. (2.38)

The free spectral range is the range of wavelengths that can be studied uniquely without

contamination from overlapping orders.

The resolving power of a diffraction grating can also be expressed as [4]

R = mN, (2.39)

where N is the number of grooves illuminated on the surface of the grating. The ability of

a grating to resolve two closely spaced lines in a spectrum depends on the dispersion of the

grating and the angular interval in the focal plane over which a single wavelength is spread.

The smallest angle that can be subtended by a single wavelength is given by the diffraction

limit [22]

∆θi ∼ λ

D
. (2.40)

In this formula, D is the diameter of the beam incident on the grating. In order for a grating

spectrometer to attain its best resolution, it must be used near the diffraction limit. This

requires that the range of incident angles at the grating be small, which in turn limits the

width of the entrance slit, and thus the throughput and consequently the overall efficiency.

A common grating spectrometer configuration is shown in figure 2.20. In astronomical

spectroscopy at submillimetre wavelengths (350 — 1100 µm) diffraction gratings are seldom

used. For example, let us use equation 2.39 to determine the size of the grating that will

achieve the resolving power of 104, the resolving power of the FTS used in this thesis. If

we choose to work in the first order we require N = 104 lines on the grating, and since the

separation between these lines, a, is of the order of one wavelength, the length of the grating
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Figure 2.20: Czerny-Turner diffraction grating: the grating provides dispersion and the
mirrors provide focusing

is Na = 11 m. Moreover, in order to minimize self-emission this grating would require

cryogenic cooling, a situation that is clearly impractical. When operating in the first order,

the grating spectrometer has a large free spectral range, however its low throughput and

single wavelength operation are particularly disadvantageous when trying to measure the

spectrum of a weak astronomical source.

2.11.2 Fabry-Perot interferometer

In contrast to an FTS, which operates on the principle of two beam interference, a

Fabry-Perot interferometer [22, 26] is a high-resolution spectrometer which operates on the

principle of multiple beam interference. Figure 2.21 shows a schematic of a Fabry-Perot

interferometer, which consists of two plane, parallel, highly reflective surfaces separated
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by a distance d. The enclosed air gap typically ranges from several millimetres to several

centimetres. If the gap can be varied by moving one of the mirrors, then it is referred to

as an interferometer. When the mirrors are held fixed then it is referred to as an ‘etalon’.

All rays incident on the Fabry-Perot at a given angle, θ, will result in a single circular

fringe when projected onto the screen by the focusing lens. The interference bands will

be narrow concentric rings, corresponding to the multiple-beam transmission pattern [22].

The equation that describes the transmitted intensity, ItIi , that is projected onto the screen

is given by [22];

It
Ii
=

µ
T

1−R

¶2 1

1 + [4R/(1−R)2] sin2(δ/2)
, (2.41)

where R is the reflectance, T is the transmittance and δ, the phase difference, is given by

δ =
2π

λ
Λ+ 2φ =

4πnf
λ

d cos θ + 2φ, (2.42)

where Λ is the optical path difference and φ is an additional phase.

A Fabry-Perot interferometer is a multiple beam interferometer, capable of ex-

tremely high resolution in the near infrared. It operates on the principle of amplitude

division interferometry, which means that the interfering beams are produced by splitting

the incoming beam at a partially reflecting surface. In a Fabry-Perot interferometer, a

series of such beams is produced by multiple reflections between two parallel plates with

partially reflecting coatings.

In common with the FTS the Fabry-Perot interferometer has cylindrical symmetry,

and thus much higher throughput than the grating spectrometer. While the use of multiply

reflected beams leads to a compact design for the Fabry-Perot interferometer, it does place

high tolerance demands on the optomechanical design. The resolving power of a Fabry-
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Figure 2.21: Fabry-Perot interferometer

Perot interferometer is given by equation [22]

< = Fm, (2.43)

where F is known as the finesse defined as F = π
√
F
2 and F = 4R/(1−R)2 . The challenge

becomes to find highly reflective surfaces at submillimetre wavelengths, which will result in

a high finess and thus high resolving power. Like a diffraction grating, the free spectral

range of the Fabry-Perot interferometer is λ/m. While the grating spectrometer is usually

operated in low order and has a relatively large free spectral range, it is common practice to

operate a Fabry Perot interferometer in higher order (m = 100− 1000), with a correspond-

ingly lower free spectral range. While a Fabry-Perot interferometer has a higher throughput
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than a grating spectrometer, its limited free spectral range and single wavelength operation

make it unsuitable for measuring astronomical spectra at submillimetre wavelengths.

2.12 Conclusion

This chapter has introduced the mathematics behind the operation of a FTS.

The advantages and disadvantages of the FTS, when compared with two other types of

spectrometer that find common usage, have been explored. It has been shown that the

FTS, with its simple optomechanical design, broad spectral coverage, high throughput and

variable resolution make it a choice spectrometer for measurements of weak astronomical

signals at submillimetre wavelengths. Moreover, as it will be seen in chapter 4, the FTS

has the instrumental line shape of any spectrometer, and one which can be modified post

facto. The principal disadvantage is the complexity of mathematics required to extract the

spectrum.
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Chapter 3

De-glitching

3.1 Overview

This chapter discusses the detection and removal of cosmic ray effects on the

interferogram. After discussing some simple methods, a sophisticated new approach to

the detection of cosmic rays, wavelet analysis, will be introduced.

3.2 Introduction to de-glitching

Cosmic rays are the nuclei of ordinary atoms stripped of their electrons. Their

energies are extremely high and are distributed over a broad spectrum (from 109 eV to

1019 eV) [39]. The primary source of cosmic rays is the sun which provides the steady

stream of protons and electrons [39, 40]. Under conditions of increased solar activity the

solar cosmic ray flux can increase significantly as evidenced by increased auroral activity

[41]. In addition, some high energy cosmic rays travel vast distances from deep space
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although the exact nature of their origin is not well understood. Occasionally, a cosmic ray

strikes the detector and imparts a large amount of energy which results in a characteristic

spike in the interferogram. Approximately 1 in every 10 interferograms exhibit cosmic ray

spikes [5]. As an example, figure 3.1 shows an interferogram of Uranus taken during the

September 2002 observing run at the JCMT; figure 3.2 shows a zoomed in region of a cosmic

ray event. The principle characteristic of a cosmic ray event is a sharp discontinuity in the

interferogram followed by an exponential decay back to the mean level of the interferogram.

It is now common practice to use delta-sigma (∆Σ) analog-to-digital converters in

scientific instrumentation. These devices offer up to 24-bit precision and include sophisti-

cated digital filtering [42]. In the case of an interferogram, the ∆Σ effectively filters much

of the exponential decay so the cosmic ray spike has only one or two points. Nonetheless,

it is important to remove the cosmic ray from the interferogram before analysis, otherwise

the sharp feature in the interferogram domain transforms to a sinusoidal noise component

in the spectral domain. Even though the detector [43] is shielded by the aluminum casing

of the dewar and large copper cold plates, the cosmic rays still get through these shield.

Short of wrapping the detector into large amounts of lead, nothing can be done to stop the

cosmic rays from occasionally reaching the detector.

Cosmic rays are often easy to detect visually because most of the time they stand

out in the interferogram (figure 3.1). However, sometimes cosmic rays strike the detector

near the position of zero path difference. When this happens, they are difficult to detect

visually because here the interferogram has its greatest modulation. In principle, cosmic

rays are easy to correct. The simplest method is to take the point immediately before the
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Figure 3.1: An example of the effect of a cosmic ray on the interferogram
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Figure 3.2: Zoomed-in region of the interferogram shown in figure 3.1.
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cosmic ray event and one time later, when the interferogram has returned to its equilibrium

position, and either substitute the mean value of the interferogram or linearly interpolate

between the points.

3.3 Approach to de-glitching

As mentioned earlier, a data processing pipeline, written in Interactive Data Lan-

guage (IDL R°), has been developed for the analysis of data from the FTS [5]. In this

pipeline, there is a step for removing cosmic rays. However, this step is not automated, so

that de-glitching requires inspecting each interferogram by hand and removing the cosmic

rays when necessary. This procedure can be time consuming, particularly when there are

thousands of interferograms to inspect. Clearly, it would be more efficient to develop an

automatic de-glitching process.

The initial approach taken was to look for deviations of the interferogram from

its local mean value. Using a running window average of 10 points, the next point in

the interferogram was compared with the window mean and variance, and if it differed by

more than 3 standard deviations it was flagged as being a potential cosmic ray candidate.

This would correctly pick out some cosmic ray events, but it also produced false positive

detections, as shown in figure 3.3. This was particularly evident near the ZPD region where

there naturally exist a high degree of modulation.

A second approach taken was to differentiate the interferogram and discriminate

the cosmic rays on the steepness of the slope. However, for the reasons described above,

this method also fails in the region of ZPD of the interferogram. While both these methods
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Figure 3.3: An interferogram with a cosmic ray: gray lines are an attempt to deglitch. This
method picks out the cosmic ray and some of the beat patterns

work well far from the ZPD region and yet are incapable of detecting, all but the strongest,

cosmic rays near the region of ZPD, another approach was required.

3.4 Wavelet analysis

It is possible to analyze a signal using an approach called multi-resolution analysis

(MRA) [44]. MRA analyzes the signal at different frequencies with different spectral reso-

lutions (ie., every spectral component is not resolved equally). MRA is designed to give

good time resolution and poor frequency resolution at high frequencies and correspondingly,

good frequency resolution and poor time resolution at low frequencies. This is equivalent
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to observing a signal with low frequency components for long durations and a signal with

high frequency components for short durations. Wavelet analysis is one powerful method of

MRA [44]. In wavelet analysis, the signal is multiplied by a wavelet function, ψ. The width

of the wavelet window is changed as the transform is computed for every single spectral

component. The resulting continuous wavelet transform is defined as [44]:

CWTψ
x (τ , s) = Ψ

ψ
x (τ , s) =

1p|s|
Z

x(t)ψ∗
µ
t− τ

s

¶
dt, (3.1)

where the transformed signal is a function of two parameters, τ and s. τ is the translation

parameter and s is the scale parameter. ψ(t) is the transforming function and it is called

the mother wavelet. The term translation corresponds to the location of the window and

the scale corresponds to the inverse of the frequency.

The computation of CWT

The interferogram, x(t), is the signal to be transformed. The mother wavelet is

chosen to serve as a prototype for all window functions in the process. All the windows

that are used are scaled (ie., dilated (or compressed)) and shifted versions of the mother

wavelet. There are a wide variety of mother wavelets in common use (Daubechies, Mallet,

Morlet etc.) [45, 46]. Once the wavelet function is chosen, the computation starts with

a scaling of unity, s = 1. The wavelet transform is computed for all values of s, smaller

and larger than 1. As one increases the scaling factor, the wavelet becomes compressed

as one effectively studies lower spatial frequencies. For a given scale value, the wavelet is

then convolved with the interferogram signal. The factor 1√
|s| is required to normalize the

integral in equation 3.1. The convolution is repeated for increasing values of s to produce
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Figure 3.4: A time dependent signal consisting of 4 different frequencies: between 0 and
300 ms the frequency is 80 Hz, between 300 and 600 ms, 50 Hz, between 600 and 800 ms,
25 Hz and between 800 and 1000, 10 Hz.

the continuous wavelet transform (CWT).

By way of illustration, figure 3.4 shows a non-stationary signal consisting of four

different frequencies at four different times: between 0 to 300 ms the frequency of the signal

is 80 Hz, between 300 and 600 ms the frequency is 50 Hz, between 600 and 800 ms the

frequency is 25 Hz and between 800 and 1000 ms the frequency is 10 Hz.

The wavelet transform of this signal is shown in figure 3.5 where the axes are

time, scale and intensity. By comparison with figure 3.4 it can be seen that smaller scales

correspond to higher frequencies. As mentioned earlier, the wavelet transform has a good

time resolution and poor frequency resolution at high frequencies, while it has poor time

resolution and good frequency resolution at low frequencies. This can be seen in the figure

3.5. At small scales (in the range from 16 to 64 - corresponding to the 80 Hz feature in
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Figure 3.5: A wavelet transform of the non-stationary signal shown in figure 3.4

figure 3.4), the scale resolution is good; however, since the scale is inversely proportional

to frequency, this is equivalent to poor frequency resolution. The corresponding time

resolution of this 80 Hz signal, as evidenced by the sharpness of this feature projected

on to the time axis, is good. By comparison, at large scales (in the range from 100 to

600 - corresponding to the 10 Hz feature in figure 3.4), the scale resolution is poor, and

correspondingly, the frequency resolution is good. However, as expected, the time resolution

is poor as evidenced by the ill-defined projection of this feature on to the time axis.
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3.5 IDLR° wavelet analysis toolkit

The IDL R° wavelet analysis toolkit package comes with seven wavelet functions:

Daubechies, Haar, Coiflet, Symlet, Morlet, Paul and Gaussian [47]. All wavelet functions

were applied to the interferogram shown in figure 3.6 to determine their efficiency in de-

tecting cosmic rays. This study has shown that the Gaussian wavelet function appears to

give the best results. Figure 3.6 shows the result of applying a Gaussian wavelet function

to the interferogram of figure 3.1, repeated here for convenience.

In this figure, the x-axis corresponds to the interferogram position and the y-axis

corresponds to the scale. It can be clearly seen that the cosmic ray feature is immediately

evident having a significant intensity over a wide range of scales. More importantly, the

scale range of the interferogram, even in the heavily modulated ZPD region is very low,

which suggests that wavelet analysis will be a powerful tool for detecting cosmic rays in

this region, also. As chance would have it, application of this technique to the search and

detection of the cosmic rays in the ZPD region of the interferograms that form the basis of

my thesis did not reveal any likely candidates.

For completeness, figures 3.7 to 3.12 show wavelet transforms of the same interfer-

ogram performed with six different mother wavelets, which are distributed with the IDL R°

toolkit. The toolkit for the wavelet application is in read-only format, so for more infor-

mation on the details of the wavelets, the reader is referred to the toolkit manual [47]. It

can be seen that the plotting ranges of the figures are different from one another. This

is a result of the automatic scaling of the read-only software that was distributed with

the toolkit. The cosmic ray is identified by all wavelets, but most importantly, there is a
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variation in the scale range in the ZPD region from one wavelet to another. The cosmic

ray is more evident with the application of a Gaussian wavelet. Moreover, the scale range

near ZPD is narrow with the application of the Gaussian wavelet. This is not surprising,

because the spectral passband of the detector, which is defined by a narrow band filter,

has an approximately Gaussian profile. Features in the interferogram that correspond to

non-physical interferometric signals will have spectral components that fall outside of this

bandpass and therefore require different scales of the Gaussian wavelet. By contrast, fea-

tures that are due to interferometric signals will be well represented by a Gaussian wavelet

of fixed scale. In this brief analysis of the applicability of wavelets to the detection of

cosmic rays, it has been shown that the technique holds potential for detecting cosmic rays

and that in the present case, the Gaussian wavelet proves the best results.

3.6 Conclusion

It is important to remove the effects of the cosmic rays from the interferogram.

While simple methods based on differences or statistics of the interferogram can be em-

ployed, they fail near the ZPD region where the interferogram experiences its greatest

modulation. A new sophisticated method, based on wavelet analysis, holds much promise

for the detection of cosmic ray events even near the heavily modulated ZPD region.
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Figure 3.6: Wavelet transform of the interferogram shown in figure 3.1. The cosmic ray
at 80 ms shows a wide range of scale in the wavelet transform. By comparion, the heavily
modulated zero path difference region of the interferograms shows a low and limited range
of scales in the wavelet transform.
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Figure 3.8: Coiflet wavelet
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Figure 3.10: Morlet wavelet
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Figure 3.12: Symlet wavelet
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Chapter 4

Apodization

4.1 Overview

This chapter discusses apodization, an important topic in the field of FTS spec-

troscopy. Following a brief overview of apodization and in particular the role of natural

apodization that occurs in any interferometer, the rest of the chapter will focus on the

derivation of optimum apodization functions for FTS spectroscopy.

4.2 Introduction to apodization

Apodization [4, 25, 48, 49, 50, 51, 52] is a mathematical procedure that is used

in FTS spectroscopy to minimize the “ringing” present in the Instrumental Line Shapes

(ILS). The word apodization refers to the suppression of the ringing, or the side lobes of

the ILS; the word is derived from the Greek, ’α πòδos, which means ‘without feet’ [25]. The

ringing is the result of the interferogram being truncated at finite optical path differences.
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The Fourier transform of an interferogram produced by a monochromatic source from an

ideal interferometer, measured out to infinite optical path difference, would yield a delta

function. Mathematically, the interferogram measured out to an infinite distance can be

expressed by the following equation which was derived in chapter 2 [25]:

I(δ) =

+∞Z
−∞

B(σ) cos 2πσδ · dσ. (4.1)

Here, I(δ) represents the interferogram, B(σ) is the intensity of the source at

wavenumber σ (cm−1) and δ is the optical path difference variable (cm). The spectrum is

calculated by taking the cosine Fourier transform of I(δ)

B(σ) =

+∞Z
−∞

I(δ) cos 2πσδ · dδ. (4.2)

Since in practice, interferograms have finite length this is equivalent to an infinitely long

interferogram shown in figure 4.1 multiplied by a top hat function shown in figure 4.2 and

represented by the equation

Π(δ) = 1 |δ| ≤ L (4.3)

Π(δ) = 0 |δ| > L.

The resultant wave is a cosine wave with a sharp cut off at the optical path

difference ±L shown in figure 4.3. The Fourier transform of equation 4.3 is

F {Π(δ)} =
LZ
−L

e−i2πσδdδ = 2Lsinc(2πσL), (4.4)

which is shown in figure 4.4 where the sinc function is defined as

sinc(2πσδ) =
sin(2πσδ)

2πσδ
. (4.5)
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Figure 4.1: Infinite cosine wave of frequency σ0
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Figure 4.2: Top hat function with a maximum optical path difference of ±L.
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Figure 4.3: A truncated interferogram of a monochromatic source of frequency σ0
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Figure 4.4: Fourier transform of the interferogram in figure 4.3
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Since the interferograms can only be measured to finite optical path differences,

the Fourier transform of an interferogram is equivalent to the convolution of the spectrum

with equation 4.4 meaning that all spectral lines will have a sinc profile. In the case where

one is primarily interested in the continuum component of emission, it is useful to reduce

the size of the sidelobes of the sinc function by use of an apodizing function.

The convolution of two functions g(t) and h(t) is defined in the following equation

[38]:

g(t) ∗ h(t) =
+∞Z
−∞

g(u)h(t− u)du. (4.6)

Convolution of two functions can be thought of as the area of the product of g(u) and h(t−u),

varying with t [38]. In another words, a convolution is an integral that expresses the amount

of overlap of one function h as it is shifted over another function g. If H(f) = F−1{h(t)}

and G(f) = F−1{g(t)} then the convolution theorem can be described through the following

equations [38]:

F {H(f)G(f)} = F {H(f)} ∗ F {G(f)} = h(t) ∗ g(t) (4.7)

F−1 {h(t) ∗ g(t)} = F−1 {h(t)}F−1 {g(t)} = H(f)G(f),

and

F−1 {h(t)g(t)} = H(f) ∗G(f) (4.8)

F {H(f) ∗G(f)} = h(t)g(t).

This illustrates that multiplication in the time domain is equivalent to the convolution in

the frequency domain, and vice versa [4]
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Function FWHM h1 h2 h3 h4 h5
Sinc 1.207

2L -0.21723 -0.09132 -0.05797 -0.04248 -0.03352
0.71552 1.73632 2.74215 3.74511 4.74704

Table 4.1: FWHM, height (upper) and position (lower) in units of 1/L of the first 5 sec-
ondary minima of a sinc function (figure 4.4) normalized to the principal maximum.

Function FWHM h1 h2 h3 h4 h5
Sinc 1.207

2L 0.12837 0.07091 0.04903 0.03747 0.03033
1.23015 2.23983 3.24382 4.24616 5.24780

Table 4.2: FWHM, height (upper) and position (lower) in units of 1/L of the first 5 sec-
ondary maxima of a sinc function (figure 4.4) normalized to the principal maximum.

Three parameters are important when discussing apodization: the height of the

principal maximum, the FWHM, and the height of the largest secondary maximum of the

ILS. Tables 4.1 and 4.2 show the FWHM and the height of the of the secondary maxima

and minima of a sinc function; secondary heights being normalized with respect to the

principal maximum.

From table 4.1, we can see that the first minimum is about -21.7 % which is a

significant fraction of the total height of the sinc function. It is also noticeable that the

heights of successive secondary maxima fall off, but not very rapidly. The ILS of a perfect

interferogram obtained with an interferometer sampled out to optical path difference ±L

is the sinc function, given by equation 4.5, which is responsible for the ringing seen in the

spectral lines.

The sole purpose of apodization is to decrease the amplitude of the secondary

lobes of the sinc function in the frequency domain at the cost of increasing the FWHM, or

equivalently, lowering the spectral resolution. Apodization is accomplished by multiplying

the interferogram with a function which generally reduces the amplitude of the interferogram
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at increased optical path differences and results in the broadening of the ILS (recall that the

ILS is simply the Fourier transform of the apodizing function). Many apodization functions

find common use, but only a few of them are recommended [51]. A good apodizing function

will decrease the amplitude of the sidelobes while minimizing the increase in the FWHM.

The shape of the ILS is determined by the shape of the Fourier transform of the apodizing

function. As an example, let us look at the following function

A(δ) = 1−
¯̄̄̄
δ

L

¯̄̄̄
− L ≤ δ ≤ L (4.9)

A(δ) = 0 δ > |−L| .

This is the so called triangular, or Bartlett, apodization function; it is the most commonly

used apodization function in infrared FTS spectroscopy [25] yet, as it will be shown later,

and far from optimum. In general, any function that has a value of unity at δ = 0 and

decreases with increasing retardation can be used as an apodizing function.

4.3 Natural apodization

In reality, all interferograms suffer from some degree of apodization due to the

divergence of radiation within the interferometer. In the case of a point source located

at a focus of a lens which feeds an interferometer, the resulting collimated beam has no

divergence and thus the overlap of the recombined beams from the interferometer is inde-

pendent of path difference. In a real interferometer the entrance aperture has finite size

which means that a beam entering the interferometer is divergent and the overlap between

the recombined beam now depends upon the path difference between them; this leads to

the phenomenon known as natural apodization. For example, consider the light entering
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Figure 4.5: A diagram of light entering the entrance aperture at an angle α.

an entrance aperture at an angle α shown in figure 4.5. Then the off-axis path difference

is δ cos(α). The resulting intensity is evaluated by integrating over the solid angle Ω using

dI(δ) = cos(2πσδ cos(α))dΩ. (4.10)

In the small angle approximation cos(α) ≈ 1− α2

2 , equation 4.10 becomes

dI(δ) = cos

µ
2πσδ

µ
1− α2

2

¶¶
dΩ. (4.11)

For a circular entrance aperture Ω = πα2. Substituting this into equation 4.11 and inte-

grating from Ω = 0 to Ω = Ωm, where Ωm is the divergence limit within the interferometer,

we obtain the following equation for the interferogram

I(δ) = Ωmsinc
µ
σδΩm
2π

¶
cos

µ
2πσδ

µ
1− Ωm

4π

¶¶
(4.12)
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The sinc term in equation 4.12 is what gives rise to the natural apodization discussed above,

while the Ωm
4π term inside the cosine function is due to the off-axis optical path difference

variation which causes the oblique rays to be observed at shorter wavenumbers. Natural

apodization is a direct result of the finite entrance aperture.

4.4 The Filler diagram

Many studies have been conducted on apodization functions. In 1964, A.S. Filler

[52] conducted a study of several apodization functions and introduced two families of

functions denoted by Dα(δ) and Eα(δ) defined as

Dα(δ) = cos

µ
πδ

2L

¶
+ α cos

µ
3πδ

2L

¶
where 0 ≤ α ≤ 1 (4.13)

Eα(δ) = 1 + (1 + α) cos

µ
πδ

L

¶
+ α cos

µ
2πδ

L

¶
where 0 ≤ α ≤ 1. (4.14)

Filler devised a way of comparing different functions by plotting the normalized height of

the largest secondary maximum as a function of FWHM. The FWHM of the central peak

of the apodization function is a measure of resolution, and the absolute magnitude of the

first sidelobe is a measure of apodization [52]. It is important to note that in some cases the

first lobe is not the largest one. Therefore, Filler generalized the measure of apodization

to be the magnitude of the lobe with the largest absolute value. He discovered that the

logarithm of the absolute value of the first lobe varies almost linearly with the FWHM of

the central peak for the two cases of Dα(δ) and Eα(δ) functions, where α lies between 0

and 0.25.

In 1975, Robert H. Norton and Reinhard Beer [51] introduced another set of

functions, denoted Pα,p(δ), which are variants of the Eα(δ) family. They added a constant
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Figure 4.6: Filler diagram for Dα(δ), Eα(δ) and Pα,p(δ) functions. Red and orange portions
of the graph are somewhat linear as proposed by Filler

term p and allowed α to vary from -1 to 1. Pα,p(δ) are described by the following equation:

Pα,p(δ) = 1 + p+ (1 + α) cos

µ
πδ

L

¶
+ α cos

µ
2πδ

L

¶
where − 1 ≤ α ≤ 1 0 ≤ p ≤ 1.

(4.15)

Figure 4.6 shows the three families of functions Dα(δ), Eα(δ) and Pα,p(δ) graphed on what

is known as the Filler diagram. Different points on the graph are functions with different

values of α. The portions that are in red are the values of α from 0 to 0.26 for functions

Dα(δ). The portions in orange are the values of α from 0 to 0.22 for functions Eα(δ). For

these values of α the graph looks linear for both sets of functions.
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4.4.1 Norton-Beer apodization functions

Robert H. Norton and Reinhard Beer [51, 50] conducted a study of about three

thousand algebraic and trigonometric-algebraic functions. These authors computed the

FWHM and height of the largest secondary lobe of these functions, and plotted them on

the Filler diagram.

The authors found that the best set of apodizing functions is simply algebraic of

the form

A(δ) =
nX
i=0

Ci

"
1−

µ
δ

L

¶2#i
where

nX
i=0

Ci ≡ 1. (4.16)

In these functions, n does not exceed four since the authors did not find any improvement

beyond this value. As a result of this analysis the authors identified three functions, out

of the three thousand, that are optimum and now find common usage in Fourier spec-

troscopy. These are known as Norton-Beer ‘weak’, ‘medium’ and ‘strong’ apodization

functions. These apodization functions and their corresponding ILSs are shown in figures

4.7 and 4.8, respectively. Table 4.3 shows the coefficients, Ci , of these functions [51]. It

also shows the resulting FWHM and the height of the largest secondary lobe of the cor-

responding ILSs normalized to the case of the sinc function. It can be seen from figure

4.7 that these functions fall off sharply with increased path difference, but they do flatten

out and some even increase slightly. The ILSs of these three functions are shown in figure

4.8 As expected, it can be seen that weak Norton-Beer apodization has larger sidelobes

compared with the medium and strong apodization. The price of reducing the amplitude

of ringing results in the lowering of the spectral resolution. The Norton-Beer functions

have the advantage in that the zero crossings of each function essentially coincide with the
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Figure 4.7: Norton-Beer weak, medium and strong apodizing functions
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Figure 4.8: Instrumental line shapes for Norton-Beer weak, medium and strong apodizing
functions as a function of maximum optical path difference, L
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Apodizing
function
number

C0 C1 C2 C4
Normalized
FWHM

Height of
largest
secondary
lobe

0 (Boxcar) 1 0 0 0 1.000 -21.723 %
1 (Weak) 0.384093 -0.087577 0.703484 0 1.200 -5.816 %
2 (Medium) 0.152442 -0.136176 0.983734 0 1.400 -1.426 %
3 (Strong) 0.045335 0 0.554883 0.39978 1.600 -0.373 %

Table 4.3: Coefficients of the Norton-Beer apodizing functions.

zero crossings of the sinc function. The more closely the crossings are to those of the sinc

function, the less damage is done to the independence of the data [51].

It is interesting to note that on the Filler diagram there appears to be a boundary

below which no function penetrates. Norton-Beer determined the empirical equation of

this boundary to be [51]

log10 |h/h0| ≈ 1.939− 1.401 (W/W0)− 0.597 (W/W0)
2 . (4.17)

In this equation h/h0 is the size of the largest secondary lobe (not necessarily the first one)

relative to the sinc function and W/W0 is the FWHM relative to the sinc function. For the

purpose of graphing the functions on the Filler diagram, the FWHM and the height of the

secondary lobe of each function is divided by the corresponding value of the sinc function.

The locus of some apodizing functions are shown in figure 4.9 and some of the functions

in this figure are given in equation 4.18 [49]: It is evident that almost all of the functions

lie to the right of the empirically determined boundary. The three Norton-Beer functions,

with coefficients given in table 4.3, were chosen so that the ILSs would fall very close to

the boundary, as it can be seen from figure 4.9. From the Filler diagram, we can see that

there is one function for each family of functions Dα(δ), Eα(δ) and Pα,p(δ) that falls very
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close to the line. The values of α for these functions are: α = 0.26 for Dα , α = 0.22 for

Eα, p = 0.3 and α = −0.0325 for Pα,p.

Bartlett = 1− δ

L
(4.18)

Gaussian = exp

Ã
−
µ
δ

L

¶2!

Hann = 0.5(1 + cos

µ
π
δ

L

¶
Bohman =

µ
1− δ

L

¶
cos

µ
π
δ

L

¶
+
1

π
sin

µ
π
δ

L

¶
Lanczos = sin

µ
πδ

L

¶
/

µ
πδ

L

¶
.

4.4.2 Blackmann-Harris and Hamming apodization functions

From the Filler diagram we can see that other functions lie close to the boundary:

Hamming and Blackman-Harris (B-H). The Hamming function is given by [49]

A(δ) = 0.54 + 0.46 cos

µ
πδ

L

¶
. (4.19)

There are two common versions of Blackman-Harris functions [49]; the three term Blackmann-

Harris function is given by

A(δ) = 0.42323 + 0.49755 cos

µ
πδ

L

¶
+ 0.07922 cos

µ
2πδ

L

¶
, (4.20)

and the four terms Blackman-Harris function is given by

A(δ) = 0.35875 + 0.48829 cos

µ
πδ

L

¶
+ 0.14128 cos

µ
2πδ

L

¶
+ 0.01168 cos

µ
3πδ

L

¶
. (4.21)
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Recently, Learner et al. [31] introduced a modified four term Blackmann-Harris function

which takes the form

A(δ) = 0.355766+0.487395 cos

µ
πδ

L

¶
+0.144234 cos

µ
2πδ

L

¶
+0.012605 cos

µ
3πδ

L

¶
, (4.22)

in which the coefficients are modified to remove the pedestal at the end of the apodizing

function. All four of these functions are shown in figure 4.10 and the ILSs are shown in

figure 4.11

As can be seen from figure 4.9 the locus of these functions on the Filler diagram

falls close to the boundary which is defined by the empirical line given by equation 4.17.

The goal is to find functions that lie close to this boundary; functions that are far from this

boundary are less than optimum and should be avoided. It can be seen that one of the

worst functions in this respect is the triangle function. The FWHM of triangle function is

1.48 with respect to the sinc function and height of the secondary lobe is 4.7 % of the central

maximum. The Hamming function has a similar FWHM but its height of the secondary

lobe is 0.735 % of the central maximum, which is considerably smaller. Surprisingly the

triangle function is still widely used in Fourier transform spectroscopy.

4.5 Extended apodizing functions

We have extended the work of Norton and Beer to generate 10 apodizing functions

of the family described by equation 4.16, which correspond to FWHMs of the ILS from 1.1

to 2.0 in steps of 0.1. Seven of these functions are new; three functions that correspond to

FWHMs of 1.2, 1.4 and 1.6 represent minor changes to those given earlier. These functions

were generated by finding the best set of coefficients Ci in equation 4.16 for each FWHM.
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Figure 4.10: Four apodizing functions: Blackman-Harris (3-terms), Blackman-Harris (4-
terms), Hamming and adjusted Blackman-Harris (4-terms)
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Figure 4.11: Instrumental line shapes of Blackman-Harris, Hamming and Adjusted
Blackman-Harris apodizing functions
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4.5.1 Finding the coefficients

The coefficients were found using the IDL R° [53] Amoeba minimization routine.

The IDL R° program was written to perform the minimization. Starting from their func-

tional form, the Norton-Beer functions 4.16 were Fourier transformed to determine the ILS

and subsequently its FWHM. The magnitude of the largest secondary maximum (or min-

imum) was also calculated. The next step was to choose target FWHM with reference

to the FWHM of the sinc function, for example 1.3, and to minimize the magnitude of

the largest secondary lobes so that the function would fall on or below the empirical line

on the Filler diagram. The program iterated until the number of iterations reached some

limit (in practice this was set at 400). After each iteration, the program would plot the

corresponding function locus on the Filler diagram. Once the program had converged, or

reached the iteration limit, the corresponding point was plotted on the Filler diagram to-

gether with the empirical line described by equation 4.17. Upon convergence, the program

returns the set of coefficients, Ci, that correspond to the minimized function. The number

of terms required (n in the equation 4.16) to achieve convergence depended on the degree

of apodization and ranged from n = 3 to n = 5 terms for FWHMs ranging from 1.1 to 2.0.

In all cases the initial starting point on the Filler diagram was taken to be the locus of the

sinc function. It was possible to determine all coefficients from the starting point. For

completeness, the program was executed with different starting points and Amoeba would

always converge to the same set of coefficients even when the starting point was a significant

distance away from the starting position.

In order to determine the validity of the empirical line (equation 4.17) it was
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decided to repeat this analysis with the target line shifted two decades below its nominal

position on the Filler diagram. The result showed that the functions would converge to

essentially the same value. This provides confidence that the empirical line (equation 4.17)

is a real limit for this class of functions. As a further independent check of these results, a

different minimization method, Powell method, was used to confirm the coefficients. The

Powell method returned the same coefficients as the Amoeba method. This proved that we

indeed have the right coefficients. In the next section we briefly describe the two methods

used.

4.5.2 Amoeba or Downhill simplex method

The IDL function Amoeba minimizes functions using the downhill simplex method

[54, 55]. The downhill simplex method performs multidimensional minimization ie., finds

the minimum of a function with two or more independent variables. The simplex method

does not require the knowledge of the derivative of the function and therefore the method

finds frequent use. A simplex is a geometrical figure consisting, in N dimensions, of N +1

vertices and all their interconnected line segments and polygon face [55]. For example, in

two dimensions, a simplex is a triangle and in three dimensions it is a tetrahedron. In

multidimensional minimization, it is necessary to give a starting guess ie., N+1 points that

define an initial simplex. If P0 is the initial point then the rest of points can be found using

the following formula Pi = P0 + λei, where, ei are N unit vectors and λ is a guess of the

problem’s characteristic length scale [55].

The downhill simplex method takes a series of steps from an initial starting point,

through the opposite face of the simplex, to a location where the function has a lower
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value; these steps are called reflections. The method also can expand itself in one or

more directions to take larger steps. When minimization reaches a “valley floor”, the

method contracts itself in the transverse direction and tries to go down the valley. Like

all minimization algorithms, the convergence criteria can be complicated. Furthermore,

since there is more than one variable, it is possible to define different tolerances for each.

One method of checking for convergence is to determine when the next step size is lower

than some predetermined value; conversely, for a given variable, the minimization can be

assumed to be converged when the function value is less than some predetermined value.

4.5.3 Powell method

The Powell method of minimization [55, 56] uses the method of the direction set,

which includes a set of directions along which the function moves towards its minimum.

The Powell method uses what is called a conjugate direction set, which means that the

minimization along one direction is not affected by the minimization along subsequent

directions since these are linearly independent [55]. Starting from an initial point P0, the

method constructs n+1 lines through this point and searches for a minimum of the function

along each line for the direction of largest decrease of the function. Each minimum along

each direction line is stored as Pl where l = 1..n. The direction of the largest decrease is

replaced by the direction given by (Pn − P0). The assumption of the scheme is that the

substituted direction includes the replaced direction so that the resulting set of directions

remains linearly independent [55]. The iteration process continues with the new starting

position P0 = Pn until the minimum is reached.



82

FWHM C0 C1 C2 C4 C6 C8
1.1 0.701551 -0.639244 0.937693 0 0 0
1.2 0.396430 -0.150902 0.754472 0 0 0
1.3 0.237413 -0.065285 0.827872 0 0 0
1.4 0.153945 -0.141765 0.987820 0 0 0
1.5 0.077112 0 0.703371 0.219517 0 0
1.6 0.039234 0 0.630268 0.234934 0.095563 0
1.7 0.020078 0 0.480667 0.386409 0.112845 0
1.8 0.010172 0 0.344429 0.451817 0.193580 0
1.9 0.004773 0 0.232473 0.464562 0.298191 0
2.0 0.002267 0 0.140412 0.487172 0.256200 0.113948

Table 4.4: Coefficients of the extended Norton-Beer apodizing functions.

4.5.4 Results

Using the method described above we have extended the analysis of Norton and

Beer to derive the coefficients of 10 optimum apodizing functions that correspond to FWHM

of 1.1 to 2.0 in steps of 0.1. The apodizing functions are shown in figure 4.12, the corre-

sponding ILSs in figure 4.13 and the coefficients Ci are shown in table 4.4.

The locus of these apodizing functions are shown as red circles in figure 4.14; the

three original Norton-Beer functions are shown as blue circles. Also shown is the location of

the triangle (Bartlett) apodizing function, which, as mentioned earlier, although frequently

used, is far from optimum.

4.6 Conclusion

In conclusion, numerous apodizing functions have been compared and contrasted

in this chapter. It has been shown that some of them are far from optimum. We agree

with Norton and Beer that there is evidence for an empirical line on the Filler diagram
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Figure 4.12: Ten extended Norton-Beer apodizing functions. The function corresponding
to FWHM of 1.1 is in black, the rest of the functions in decreasing order of the tail amplitude
correspond to FWHM of 1.2, 1.3 etc.
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Figure 4.13: Instrumental line shapes corresponding to the 10 apodizing functions compared
with the sinc function (pink line). Insert shows the magnified region of the third sidelobe.
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Figure 4.14: Extended Norton-Beer apodizing functions (red circles) compared with three
original Norton-Beer apodizing functions (blue cirlcles) and the triangle (Bartlett) apodizing
function (red triangle)

below which no optimum apodizing function exist. Our study of the extended Norton-Beer

apodizing functions has led to derivation of 10 optimum functions. These functions can

easily be used to study the tradeoff between resolution and the ringing of the ILS. These 10

new functions cover the range from 1.1 to 2.0 of FWHM in steps of 0.1. The FWHM, the

height and the positions of the secondary minima and maxima of these functions are given

in tables 4.5 and 4.6, respectively. Table 4.7 gives the percentage of the largest secondary

lobe of these functions with respect to the central maximum.
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Relative
FWHM

FWHM h1 h2 h3 h4 h5

1.0 0.60364 -0.21723 -0.091325 -0.057973 -0.042479 -0.033525
0.715525 1.736325 2.742149 3.745112 4.747042

1.1 0.66420 -0.096312 -0.075860 -0.050756 -0.037757 -0.029987
0.750012 1.713789 2.726237 3.733150 4.737500

1.2 0.72424 -0.055039 -0.045200 -0.031224 -0.023451 -0.018701
0.815562 1.734427 2.737289 3.740819 4.743405

1.3 0.78458 -0.027229 -0.026187 -0.019615 -0.015065 -0.012127
0.893129 1.747848 2.741476 3.743089 4.744947

1.4 0.84468 -0.013897 -0.013639 -0.012602 -0.010128 -0.008296
0.990710 1.744366 2.731459 3.734965 4.738350

1.5 0.90512 -0.006740 -0.005233 -0.006337 -0.005274 -0.004388
1.093694 1.794395 2.755126 3.750099 4.749515

1.6 0.96542 -0.002756 -0.001781 -0.002705 -0.002569 -0.002242
1.201594 1.885519 2.770838 3.754891 4.751677

1.7 1.02550 -0.001295 -0.000511 -0.001098 -0.001227 -0.001133
1.324419 1.974661 2.788058 3.760063 4.754043

1.8 1.08598 -0.000064 -0.000313 -0.000380 -0.000550 -0.000551
1.482119 2.061705 2.819646 3.767627 4.757247

1.9 1.14610 -0.000263 -0.000282 -0.000085 -0.000199 -0.000232
1.644506 2.098222 2.903101 3.783034 4.762789

2.0 1.20662 -0.000104 -0.000083 -0.000104 -0.000105 -0.000101
2.348144 3.776461 4.763836 5.758335 6.755960

Table 4.5: FWHM and height (upper row) and position (lower row) of the first five minima
of 10 best apodizing functions in units of 1/L.
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Relative
FWHM

FWHM h1 h2 h3 h4 h5

1.0 0.60364 0.128375 0.070914 0.049029 0.037473 0.030332
1.230154 2.239839 3.243821 4.246163 5.247804

1.1 0.66420 0.096291 0.061050 0.043331 0.033434 0.027178
1.206513 2.220976 3.230148 4.235539 5.239143

1.2 0.72424 0.054493 0.037163 0.026814 0.020821 0.016972
1.243239 2.235294 3.239185 4.242212 5.244445

1.3 0.78458 0.027323 0.022755 0.017081 0.013447 0.011037
1.280246 2.242023 3.242146 4.244048 5.245779

1.4 0.84468 0.008161 0.013794 0.011295 0.009135 0.007587
1.328441 2.231925 3.233072 4.236753 5.239763

1.5 0.90512 0.003573 0.006695 0.005802 0.004800 0.004033
1.405000 2.264633 3.251529 4.249592 5.249655

1.6 0.96542 0.002738 0.002413 0.002696 0.002407 0.002089
1.505329 2.301476 3.259629 4.252705 5.251229

1.7 1.02550 0.001252 0.000782 0.001217 0.001189 0.001071
1.615708 2.343501 3.268347 4.256090 5.252965

1.8 1.08598 0.000555 0.000212 0.000501 0.000561 0.000532
1.691538 2.419983 3.282272 4.260803 5.255272

1.9 1.14610 -0.00013 0.000102 0.000151 0.000223 0.000232
1.830878 2.539345 3.315750 4.269465 5.259122

2.0 1.20662 0.000058 0.000097 0.000106 0.000104 0.000098
3.284766 4.268922 5.260508 6.256902 7.255372

Table 4.6: FWHM and height (upper row) and position (lower row) of the first five maxima
of 10 best apodizing functions in units of 1/L.

FWHM of Extended
Norton-Beer functions
relative to sinc

Height of secondary
maxima as a percentage
of total height

1.0 -21.723 %
1.1 -9.631%
1.2 -5.504 %
1.3 -2.732 %
1.4 -1.389 %
1.5 -0.674 %
1.6 -0.275%
1.7 -0.129 %
1.8 -0.031 %
1.9 -0.026 %
2.0 -0.010 %

Table 4.7: FWHM and height of the largest secondary maximum of 10 best Norton-Beer
apodizing functions.
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Chapter 5

Fourier transform spectroscopy of

the Orion Molecular Cloud

5.1 Introduction

It is well known that the interstellar medium contains molecular clouds, regions

of above average density, where, under the right conditions, star formation can take place.

The main constituents of molecular clouds are dust and molecular gas. Dust, composed

of solid grains that give rise to broadband emission, is best studied with a low-resolution

spectrometer. Emission from the gas, on the other hand, which gives rise to narrow spectral

features, is best studied using a high-resolution spectrometer. Photometric measurements,

while generally more sensitive than spectroscopic measurements because radiation from

all wavelengths within the bandpass of the infrared filter, which defines the photometric

band, is measured at any given time, are unable to differentiate between the dust and gas
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components of emission within the photometric band [35, 57]. The inability to differentiate

between these two components of emission can lead one to misinterpret the underlying

physics of the region under study.

The goal of this chapter is to determine the dust emission component of the bright-

est region in OMC, Orion-KL. The chapter divided into three parts. First, a theoretical

model of dust emission Spectral Energy Distribution (SED) is developed and three tech-

niques studied to determine the SEDs: dual-band photometry method, dual-band FTS

method and single-band FTS method. Unfortunately, although we had four observing

runs, inclement weather prevented us from obtaining spectroscopic FTS data at 450 µm.

In the second part of this chapter, I will describe two methods used to extract the contin-

uum from the 850 µm FTS band alone. Finally, the chapter concludes with an analysis

of the molecular line emission observed with the FTS, through application of a technique

commonly used in heterodyne spectroscopy known as rotation diagram analysis.

5.2 Spectral energy distribution

The spectral energy distribution, Sν , at a frequency ν, can be expressed in terms

of a spectral index, γ, which is related to the dust temperature, T, and the dust emissivity

index, β, by [14]

Sν = (NgMg)κ0

µ
ν

ν0

¶β

Bν(Td)Ω ∝ νγ , (5.1)

Sν is measured in Jy, where 1 Jy = 10−26Wm−2Hz−1, κ0 (m2/kg) is the dust emissivity at

some reference frequency ν0, β is the dust emissivity index, and Bν(Td) (Wm−2str−1Hz−1)

is the Planck blackbody function at frequency ν, for dust at temperature Td, Ω is the solid
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angle, Ng is the dust column density (m−2) and Mg is the mass of the dust grains (kg).

The Planck function, Bν(T ) is defined as

Bν(T ) =
2hν3

c2
1

e
hν
kT − 1

. (5.2)

The units of the Planck function are Wm−2str−1Hz−1. Expressed in terms of wavelength,

λ, the ratio of the photometric fluxes at wavelengths of 450 and 850 µm can be written as

[58, 59]:

S450
S850

=
e

hc
λ450kT − 1

e
hc

λ850kT − 1

µ
λ850
λ450

¶3+β
. (5.3)

The primary goal of this analysis is to determine the dust emissivity, β, but equation 5.3

shows this will require a knowledge of the dust temperature.

5.3 Methods of determining β

This section will discuss three different methods of determining the dust emissivity,

β: Dual-band photometry, dual-band FTS spectroscopy and single-band FTS spectroscopy.

A computer program was written in IDL R° to model the SED of a molecular cloud. A

cloud of temperature 30 K and dust emissivities, β, of 1.5 and 2 was modeled using equation

5.1. Under typical conditions experienced at Mauna Kea, the noise at 850 µm is an order

of magnitude less than at 450 µm [60]. In this simulation, for simplicity, and based upon

noise measured with SCUBA [60], it is assumed that the white noise of 1-σ has a value of

10 mJy at 850 µm and 100 mJy at 450 µm.

Figure 5.1 shows the SEDs for a model cloud having temperatures ranging from

10 to 50 K and for β of 1.5 and 2, arbitrarily normalized to an 850 µm band flux of 100
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Figure 5.1: Model spectral energy distribution for source flux of 100 mJy at 850 µm, dust
emissivity β = 1.5 and 2 and temperatures of 10, 20, 30, 40, 50 K. The passbands of the
850 µm and 450 µm bands are identified by solid black lines.

mJy. Figure 5.2 shows the same SEDs as in figure 5.1, with noise added as described

above. The two regions bounded by solid lines correspond to the 450 and 850 µm filters

matching the atmospheric transmission windows in which observations are possible from

Mauna Kea, shown in figure 5.3 [61]. These models will be used in the next section to

compare and contrast different methods of determining the dust emissivity, β. The 450 and

850 µm waveband regions, with added noise, were fitted to a function of the form of the

equation 5.1 using the fitting routine MPFITFUN described in the section 5.3.3.
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Figure 5.2: Model spectral energy distribution for source flux of 100 mJy, dust emissivity
β = 1.5 and 2 and temperatures of 10, 20, 30, 40, 50 K. White noise was introduced into
two bands as discribed in the text.

5.3.1 SCUBA 850 and 450 µm photometry

Estimates of dust emissivity can be obtained from SCUBA photometric measure-

ments, at 850 and 450 µm, by inversion of equation 5.3. Photometric measurements have

superior raw sensitivity when compared with the spectroscopic measurements taken with

an FTS using a similar detector [35, 57]. This is due to the fact that radiation from all

wavelengths within the bandpass of the infrared filter, which defines the photometric band,

is measured at any given time. There are other difficulties with the dual band photomet-

ric method. The shape of the JCMT beam at 450 µm is far from ideal. In addition to
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a narrow diffraction limited response of ∼7”, the beam has significant side-lobe response

due to diffraction from the individual panels (∼1m) that constitute the dish surface [62].

Because the beam sizes at 450 and 850 µm are so different, comparing photometric data

at the two wavebands requires some assumptions with respect to the size of the emitting

region and its coupling to the telescope in the two wavebands. Finally, observations at

450 µm are extremely sensitive to weather, because in this band, the adjacent water vapour

lines are much stronger than at 850 µm. Figure 5.3 shows the atmospheric transmission

at Mauna Kea at submillimetre wavelengths, from which it is seen that observations at 450

µm require the best observing conditions.

The data corresponding to T = 30 K and β =1.5 in figure 5.2 was used to determine

β, using the dual-band photometric method. The fluxes, S450 and S850, were determined

by calculating the area under the curve in the 450 and 850 µm bands. Using equation 5.3,

β was calculated as follows:

e
hc

λ450kT − 1
e

hc
λ850kT − 1

µ
λ850
λ450

¶3+β
=

S450
S850

(5.4)

µ
λ850
λ450

¶3+β
=

S450
S850

e
hc

λ850kT − 1
e

hc
λ450kT − 1

(3 + β) log

·
λ850
λ450

¸
= log

"
S450
S850

e
hc

λ850kT − 1
e

hc
λ450kT − 1

#

3 + β = log

"
S450
S850

e
hc

λ850kT − 1
e

hc
λ450kT − 1

#·
log

λ850
λ450

¸−1
β = log

"
S450
S850

e
hc

λ850kT − 1
e

hc
λ450kT − 1

#·
log

λ850
λ450

¸−1
− 3

The next step was to use equation 5.4 to determine β while varying the estimate

of the temperature, T , of the cloud. Starting at the guess temperature of 10 K up to the
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Figure 5.3: The transmission of the atmosphere: at 1 mm precipitable water vapour (black)
and at 0.5 mm precipitable water vapour (gray), corresponding to average and excellent
observing conditions, respectively. The spectral range of the 850 µm band is from 330 -
365 GHz and for the 450 µm band is from 630 - 700 GHz.

temperature of 50 K, in steps of 1 K, β was calculated. The uncertainty in the derived

β was calculated by taking the difference between the derived β and the true β of 1.5 ie.,

(β−βtrue). The result is shown in figure 5.4. The brown curve in the upper plot of figure

5.4 shows the difference between the retrieved and modeled β, using the photometric method

for a cloud having a temperature of 30 K. It is readily seen that as the assumed temperature

deviates from the model value of 30 K, the errors in retrieved β become large. One of the

biggest difficulties in determining β using the photometric method lies with estimating the

temperature of the source region; small errors in the assumed source temperature translate
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to large errors in the retrieved β. This can be readily seen from figure 5.1. Consider the

model with T = 20 K and β = 2 and the model with T = 50 K and β = 1.5. The integrated

fluxes at 450 µm are 845 and 820 mJy, respectively. Since the integrated flux at 850 µm is

100 mJy in both cases, the ratio between 450 and 850 µm fluxes is virtually identical, this

illustrates that the determination of β from the dual-band photometric method is heavily

dependent on the assumed source temperature.

5.3.2 FTS 850 and 450 µm (dual-band) spectroscopy

FTS observations at 850 and 450 µm have lower sensitivity than equivalent pho-

tometric observations since the energy is now being measured in smaller wavebands rather

than a full waveband. FTS observations share the same source-telescope coupling and

weather-related issues as photometric measurements. However, the FTS data can, in prin-

ciple, be used to extract the source temperature of the emitting region, and subsequently

to determine β, removing the reliance on the assumed source temperature.

For this method, the same model cloud was used as in the previous section, ie., T

= 30 K and β = 1.5 in figure 5.2. The noisy data from the two bands was isolated and fitted

with a function of the form in equation 5.1, using the IDL R° fitting algorithm MPFITFUN.

The algorithm is based upon the Levenberg-Marquardt technique, which finds the best set

of model parameters that match the data by minimizing the sum of the weighted squared

differences between the model and the data [63]. The lower plot in figure 5.4, (an expanded

version of the upper plot), shows the differences between the retrieved and modeled β, ie.,

(β− βtrue). The pink trace is the difference in β when the temperature is a free parameter

fitted by the fitting function and the blue trace is the difference in β when the temperature
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is assumed to be fixed at 30 K. As the assumed temperature deviates from 30 K the errors

in retrieved β increase, as expected, but they are still an order of magnitude less than the

errors in equivalent SCUBA photometric measurements (section 5.3.2). The reason for

this is that the temperature of the cloud can be, in principle, determined from the FTS

spectrum by the fitting method described above, which fits to the different slopes of the

continuum emission in the individual bandpasses at 850 and 450 µm.

5.3.3 FTS 850 µm (single-band) spectroscopy

FTS observations in the 850 µm band have several advantages over both previous

methods: the JCMT has a well defined beam profile (essentially Gaussian) of 15”, and the

weather plays less of a role at this wavelength than at 450 µm [61]. The steps in determining

β for this method are the same as in the dual-band FTS method, except that there is now

only one band to consider.

The most important result is that the retrieved β is less sensitive to errors in the

assumed temperature when compared with the dual-band photometry method in section

5.3.2, due to the fact that the longer wavelengths are closer to the Rayleigh Jeans regime.

The red trace in figure 5.4 shows the differences between retrieved and modeled β when

the temperature of the cloud is assumed to be fixed at 30 K. As the assumed temperature

deviates from 30 K, the errors in retrieved β increase but are, again, significantly less, by

roughly an order of magnitude, than those obtained with the photometric method (section

5.3.2). Table 5.1 lists the errors in the retrieved β associated with the three methods

described above for three different estimates of the temperature. The true β for the

simulated data was 1.5.
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Measurement
method

β
assuming
T = 30 K

β error
assuming T = 20 K

β error
assuming T = 40 K

SCUBA 850/450 µm 1.503 +0.122 -0.263
FTS 850/450 µm 1.5002 +0.0149 -0.0242
FTS 850 µm 1.4995 +0.0136 -0.0212

Table 5.1: Comparison of errors in retrieved β

5.4 Using FTS spectra to determine the continuum compo-

nent of emission from Orion-KL

As mentioned earlier, poor weather during the three observing runs prevented

FTS observations at 450 µm. This section will describe two approaches used to determine

the SED of the Orion-KL region using the single-band spectroscopic method at 850 µm,

described in section 5.3.4. The first approach fits a function of the form Aνγ to the regions

of lowest spectral line content of the observed FTS data of the Orion-KL region. The

second approach uses a high resolution heterodyne spectra of Orion-KL, a knowledge of

the instrumental line shape of the FTS and a function of the form Aνγ to fit to the FTS

spectrum of the Orion-KL region. First, it is necessary to describe the heterodyne data

used in this analysis.

5.4.1 Heterodyne spectroscopy versus FTS spectroscopy

While heterodyne spectroscopy provides the highest spectral resolution measure-

ments of any commonly used spectrometer [64, 6], it does so over a limited spectral range

and often has baseline drifts that make it difficult to determine any continuum components

of emission. FTS spectroscopy, on the other hand, is capable of simultaneously measur-
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ing the continuum and line components of emission, although at only moderate spectral

resolution (0.1-0.005 cm−1 (150-3000 MHz) in the case of U of L FTS). To compare the

heterodyne and FTS spectroscopic techniques, one set of data for each was obtained dur-

ing the December 2000 observing run at the JCMT. Both observations were done at a

wavelength of 850 µm.

The FTS observations were made with the U of L FTS [5]. One input port of the

FTS viewed the source and the other port viewed an open dewar filled with liquid N2. The

data were taken at spectral resolution of 150 MHz, or equivalently 0.005 cm−1. The size of

the JCMT beam at 850 µm is ∼15”. There were 146 interferograms taken in the frequency

range of 322 - 371 GHz (10.73 - 12.37 cm−1), with each source interferogram followed by

an interferogram of the background sky offset by 900” in right ascension (RA) from the

source. RA was chosen as the direction to nod to minimize contamination from other

regions of OMC, which, as discussed earlier, has filamentary structure running more or less

north to south [3]. The offset in RA is calculated so that the observations of source and

background sky are done through approximately the same airmass; however, atmospheric

variability is still the dominant noise source. Atmospheric variability is the major problem

because it introduces noise into the interferogram, which subsequently translate to noise in

the spectra. Modelling, done with the University of Lethbridge Transmission and Radiance

Model (ULTRAM), shows that atmospheric emission at 850 µm is several thousands Janskys

(Jy) [65]. By comparison, the emission from brightest region of Orion is ∼ 167 Jy, while the

emission from the majority of the compact sources in the OMC is less than a few Jy, in the

850 µm band. For this reason, it is necessary to take careful account of the contribution of
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atmospheric emission from the spectrum of Orion. For these observations, the amount of

precipitable water vapour (pwv) was on average 1.5 mm. By use of an atmospheric model

[65], the pwv can be converted to an optical opacity, τ , by the equation 5.5. This gives the

opacity of 0.09 at 225 GHz [66].

PWV = 20τ − 0.32. (5.5)

The heterodyne spectra of the Orion-KL region in the 850 µm band were obtained

at the JCMT using Rx B3 heterodyne receiver [67]. Thirty scans of two brightest regions

in OMC known as Orion-KL and Orion-S were obtained in the frequency range of 322 - 371

GHz (10.73 - 12.37 cm−1). Each scan was of the frequency range 2 GHz with the resolution

1.25 MHz; successive scans had 100 MHz overlap. As with the FTS measurements, the

effects of the atmospheric emission were minimized by position switching to the background

position offset by 900” in RA. The individual heterodyne scans were merged using a program

called SPECX [68, 69], which outputs spectra in FITS format. The final merged spectrum

is shown in the upper plot of figure 5.5. It is obvious from this plot that each scan has

a different baseline offset, due to the atmospheric variability or the calibration errors from

tuning the receiver. Following a standard procedure, a linear baseline was removed from

each individual scan. The final heterodyne spectrum with baseline removed is shown in

the lower plot of figure 5.5. The amplitude of the spectral lines is expressed in antenna

temperature, a common unit in radio astronomy, which is the signal power received at the

telescope expressed in Kelvin [70].

The upper plot of figure 5.6 shows the FTS spectrum of the Orion KL region

[5]; the classical instrumental line shape of the FTS (sinc function) is evident, and a clear
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Figure 5.5: (Upper plot) The raw heterodyne spectrum of Orion-KL showing the variation
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(Lower plot) The raw heterodyne spectrum of Orion-KL with the baseline corrected.
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continuum component can be seen. It is the continuum component that carries information

on the properties of the dust in molecular clouds, such as the dust temperature and the

emissivity. These properties are determined through analysis of the SEDs, which was

discussed in the previous section. By comparison, the lower spectrum in the figure 5.6 is

the earlier result of Serabyn [64]. Equally important, it is the only other FTS measurement

of Orion to date. The spectrum is seen to be of lower resolution with no evidence of sinc

line shape as would be expected from an FTS. Moreover, it is evident that the baseline,

which would represent any continuum emission, has been removed.

5.4.2 Orion-KL 850 µm analysis

The upper spectrum of figure 5.6 exhibits the classical sinc instrumental line shape

function of an FTS given by equation 4.4. When the heterodyne spectrum from the lower

plot of figure 5.5 is convolved with the sinc function of the appropriate resolution (150 MHz

or 0.005 cm−1), the FTS and convolved heterodyne spectra are seen to be in close agreement

as seen in figure 5.7. A measure of this agreement is the integrated line flux within the

850 µm band; the integrated line flux for the FTS spectrum is determined to be 34.1 ± 2

K*GHz, and for the heterodyne spectrum it is 35.7 ± 1 K*GHz. This level of agreement

between two independent instruments shows that the FTS is capable of precision spectral

photometry.

The existence of an underlying continuum flux can also be seen by figure 5.7; a clear

baseline offset of approximately 2 K and a noticeable slope to the data are evident. In order

to extract the underlying continuum flux, two methods have been developed. In the first

method, the heterodyne spectrum of Orion-KL was carefully examined to determine eight
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Figure 5.6: (Upper plot) Spectrum of Orion-KL taken with Fourier Transform Spectrometer,
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KL taken with Caltech Submillimeter Observatory Fourier Transform Spectrometer. In
comparison to the upper plot, the spectral lines resemble a histogram [5]. The identification
of spectral lines was done by comparing the spectrum to Schilke et al. [6] heterodyne
spectrum of the same region.
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Figure 5.7: Comparison of FTS spectra of Orion molecular (gray trace) with the convolved
heterodyne spectra (black trace).

spectral regions that had the lowest integrated line intensity. However, the continuum

component cannot be determined from the heterodyne spectrum because, as mentioned

earlier, the baseline has been removed in processing. The corresponding regions of the

lowest integrated line intensity in the FTS spectrum were determined and averaged. The

eight resulting photometric values were then fitted to a function of the form Aνγ, using the

algorithm MPFITFUN, to extract the spectral index. In the Rayleigh-Jeans region (where

hν << kT ), the Planck function can be rewritten as Bν(T ) ≈ 2ν2kT
c2

, so γ = β + 2. Figure

5.8 shows the best fit to the averaged data from regions of few spectral lines and yields a

spectral index, γ, of 3.54 ± 0.80 or, equivalently, β of 1.54 ± 0.8, in the Rayleigh-Jeans
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limit.

The second method uses the same algorithm to fit the entire FTS spectrum to

the heterodyne spectrum, which is first convolved with the instrumental line shape of the

FTS (a sinc function of FWHM 150 MHz or 0.005 cm−1) plus the continuum term (Aνγ).

Again, the spectral index and its associated 1-σ standard error is returned by the fitting

function. Figure 5.9 shows an expanded region of FTS data along with the fit returned by

the program. This method yields a spectral index, γ, of 3.59 with the 1-σ standard error

of + 1.22 and - 1.13. In the Rayleigh-Jeans limit, β becomes 1.59 with the 1-σ standard

error of + 1.22 and - 1.13.

It is well known that line emission from Orion-KL is a significant fraction of the

total 850 µm band flux [6]. Johnstone et al. [3] have determined the spectral index of

Orion-KL to be 2.2, while the mean spectral index of Orion molecular cloud was measured

to be 3.6 ± 0.4. This is shown in figure 5.10, where it is seen that the SED of Orion-KL is

much lower than other sources. There are two reasons why the spectral index of Orion-KL

is expected to be low as compared to the mean spectral index of the OMC. The first is

that the spectrum of Orion-KL could contain numerous spectral lines, which contribute to

the emission and thus lower the spectral index. The second reason is that the dust grains

in the cloud may be covered in icy mantles, which makes the emissivity, β, of the dust, and

hence its spectral index, lower. From this technique, we determined the line contribution

for Orion-KL to be 32 % ± 2 %. This is to be compared with previous estimates of the line

contribution of the total emission which are in the region of 25-50 % [64]. Our results show

that, when the spectral line component of emission is accounted for, the derived SED from
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Figure 5.9: Comparison of FTS spectra of Orion-KL (black trace) with fitted continuum
plus sinc convolved heterodyne spectra of the same region (gray trace).
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Figure 5.10: A map of the mean spectral index, γ, as a function of 850 µm flux (Jy), along
with ±1σ error estimate of the Orion Molecular Cloud taken with SCUBA photometer [3]

the 850 µm band is close to the average value determined from the SCUBA maps of the

Integral Shaped Filament (ISF) [3]. These are the first results of their kind, and, although

the error bars are large, the results agree well with previous work done with photometric

measurements.

5.4.3 Orion-KL 450 µm analysis

As discussed in section 5.3.2., 450 µm band observations are very difficult because

the atmospheric transmission and variability are often poor. For this reason, we only

have two surveys of this region, due to Serabyn [64], and Schilke [71] to compare with our
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results. Serabyn’s spectrum was obtained using an FTS at the CSO, while Schilke’s work

was obtained with a heterodyne receiver at the CSO. Unfortunately, we do not have access

to the data of Schilke analysis so we will restrict our analysis to the spectrum of Serabyn.

Figure 5.11 shows a plot of the 450 µm band Orion-KL spectrum for two different FTS

spectrometers: the upper trace shows the U of L FTS spectra, shown in red, and the lower

trace shows the CSO FTS spectrum shown in blue. The atmospheric pwv during the U

of L FTS observation of December 2001 was approximately 0.9 mm which corresponds to

an optical opacity, τ , of 0.061 (equation 5.5). Only 16 interferograms were acquired at a

wavelength of 450 µm; half on source and half off source. It is evident from the figure 5.11

that while the Lethbridge FTS spectrum is noisy, several spectral lines are identifiable. As

was the case in the 850 µm analysis, (section 5.4.2), the U of L spectrum is seen to be of

higher resolution (150 vs. 200 MHz) and exhibits the classical sinc function expected of an

FTS. Unfortunately, the quality of the 450 µm data was insufficient to attempt fitting the

underlying continuum.

5.5 Orion-S analysis

During the December 2001 observing run, the heterodyne and the FTS spectra

of the Orion-S region were obtained. Orion-S is located 90” south of Orion-KL, and is

known to have fewer molecular line transitions than Orion-KL [3]. The heterodyne spectra

of the Orion-S region in the 850 µm band were obtained using Rx B3 heterodyne receiver

at the JCMT [67]. Thirty scans were obtained, covering the frequency range of 322 -

371 GHz in intervals of 2 GHz with the resolution 1.25 MHz. Successive scans had 100
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Figure 5.12: Heterodyne spectrum of Orion-S. Some of the most prominent spectral lines
are identified on the plot.

MHz overlap. As discussed in section 5.4.1, the effects of the atmospheric emission were

minimized by position switching against a background position offset by 900” in RA. The

resulting spectrum is shown in figure 5.12. It can be seen in this figure 5.12 that there are

fewer spectral lines in the Orion-S spectrum compared to the Orion-KL spectrum, and the

lines are also weaker.

Two sets of FTS data for Orion-S were obtained during this run, one set of 28

interferograms (14 on source and 14 off source) from the December 2001 run and the other

set of 44 interferograms (22 on source and 22 off source) from the October 2002 run. The

atmospheric optical opacity at 225 GHz for these dates were 0.056 and 0.081, respectively.
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As discussed above, the first step in the analysis was to take the heterodyne data

and convolve it with the sinc function of FWHM of 150 MHz to simulate the instrumental

line shape of an FTS. The result is shown in figure 5.13. The red curve shows the

heterodyne data convolved with a sinc function.The next step was to analyze the FTS data

and compare it to the convolved heterodyne data. It can be seen from the results, shown in

figure 5.14, that the FTS data (upper trace) are noisy. Some of the lines can be identified

but the SED could not be determined since the atmosphere was not stable enough to allow

the determination of the continuum. However, with the more sensitive detectors and better

weather, the determination of the SEDs for Orion-S would be possible. Although weather
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Figure 5.14: Measured FTS spectrum of Orion-S (black curve) compared to convolved
heterodyne spectrum (gray curve) displaced -3.5 K for clarity.

prevented obtaining the dual band FTS data, and the 850 µm data of Orion-S was of low

quality, the results presented in this section are first of their kind and serve to illustrate the

potential use of FTS spectroscopy in continuum measurements of the ISM.

5.6 Using FTS spectra to determine spectral line component

of emission for Orion-KL

Although the spectral resolution of an FTS cannot compare with heterodyne spec-

trometers, since the spectral resolution of heterodyne spectrometers is over two orders of
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Figure 5.15: The emission and absorption processes for a two level atom. N2 and N1 are
the populations of the levels 2 and 1, respectively, g2 and g1 are the degeneracies of the two
levels, and E2 and E1 are the energies of the levels.

magnitude better than the FTS spectrometer, many spectral features can be identified in

FTS spectra. We have borrowed a technique from heterodyne spectroscopy, known as the

rotation diagram technique, to analyze data shown in figure 5.6.

5.6.1 Background: Emission and absorption processes for a two-level

atom

The radiative emission and absorption processes for a two-level atom are shown in

figure 5.15. In this figure, E2 and E1 are the energies of the two levels, g2 and g1 are the

degeneracies of the two levels and N2 and N1 are the populations of the two levels.

In a steady state, the rate of loss from level two is equal to the rate of gain to level

one and vice versa, allowing one to write

−dN2
dt

=
dN1
dt

= A21N2 +B21ρ(ν)N2 −B12ρ(ν)N2, (5.6)

where A21 is the Einstein coefficient (s−1) for spontaneous emission, B21 and B12 are the
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Einstein coefficients for stimulated emission (m3/(Js2)) and ρ(ν) is the density of the radia-

tion field (Js/m3). In absence of the external radiation field, the solution for this differential

equation becomes:

N2(t) = N2(0) exp(−A21t).

If the system is maintained in thermal equilibrium, then the Maxwell-Boltzmann distribu-

tion defines the probability that a level is thermally populated. Generalized to all states,

the ratio of the population in upper state, j, to the population in the lower state, i, is given

by [72]

Nj

Ni
=

gj
gi
exp

·
−(Ej −Ei)

kT

¸
. (5.7)

In the absence of the external radiation field, as frequently occurs in the ISM, the intensity

of the emission can be written as

I = NjA21 = Ni
gj
gi
exp

·
−(Ej −Ei)

kT

¸
, (5.8)

where Nj is given by equation 5.7. Relating the number of atoms in a given state to the

total number of atoms, N , and by letting the initial state be the ground state (gi = g0,

Ei = E0 = 0), the following relationship can be established, using equation 5.8:

N = N0 +N1 +N2 + ... (5.9)

= N0 +
N0g1
g0

exp

·
−E1
kT

¸
+

N0g2
g0

exp

·
−E2
kT

¸
+ ...

=
N0
g0

µ
g0 + g1 exp

·
−E1
kT

¸
+ g2 exp

·
−E2
kT

¸
+ ...

¶
=

N0
g0

∞X
j=0

gj exp

·
−Ej

kT

¸
N =

N0
g0

Q(T ),



114

where Q(T ) is called the partition function. From equation 5.7 (taking the initial state to

be the ground state) and equation 5.9, Nj can be written

Nj =
N

Q(T )
gj exp

·
−Ej

kT

¸
. (5.10)

Equation 5.8 can then be expressed as

I = NjA21 =
N

Q(T )
gj exp

·
−Ej

kT

¸
A21,

The Einstein A coefficient can be expressed in a more fundamental way [73]

A21 =
64π4ν3

3hc3
Sµ2ji
gj

. (5.11)

Here, S is the line strength and µji is the dipole moment. From this analysis, it is clear

that under local thermal equilibrium, the measured intensity of emission is proportional to

the total number of the atoms, N, and the temperature, T. The rotation diagram technique

is the method for determining N and T , based upon this concept.

5.6.2 LTE rotation diagram technique

Rotation diagrams [74, 75, 76, 77] are a tool to study physical conditions in mole-

cular clouds. The LTE Rotation Diagram technique is based on the following assumptions:

the molecular transitions are optically thin (ie., no radiation emitted locally is absorbed

locally), a single excitation LTE temperature defines all transitions, the rotation tempera-

ture is much larger that the temperature of the background, and that the Rayleigh-Jeans

approximation holds for all transitions [73].

Using the analysis from the previous section, the rotation diagram can be calcu-
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lated by the following equation:

logL ≡ log 3k
R
T ∗Adv

8ηBνSµ
2gIgK| {z } = log

N

Qrot| {z }−
Eu

k|{z} · log eTrot| {z } (5.12)

y = c + x · m.

The quantities in this equation are in CGS units as follows:

k = 1.380658 *10−16 erg/KR
T ∗Adv is the integrated intensity in units of K*cm/s

ηB is the beam efficiency of the telescope

ν is the rest frequency of the spectrum in units of Hz

S is the line strength (Nm4/esu2)

µ is the relevant dipole moment in units of esu (1 Debye = 10−18esu)

gI is the reduced nuclear spin weight

gK is the K-level degeneracy

N is the column density in units of cm−2

Qrot is the rotational partition function

Eu is the upper state energy of the transition in units of erg

Trot is the rotation temperature in Kelvin

L =
3k T∗Adv

8ηBνSµ
2gIgK

and from this it is possible to derive the molecular abundance,

N, and the rotational temperature, Trot.

Most of the variables in this equation are known. Integrated areas of the lines can

be calculated from the spectrum that is corrected for atmospheric transmission, coupling

to the telescope and opacity of the lines. The quantity, Sµ2, however, can be derived from

the parameters in the molecular data base such as the Jet Propulsion Laboratory (JPL)
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[78]. Their website [79] gives the following relationship between Sµ2 and the integrated

line intensity at 300 K, Iba:

Sµ2 =
Iba(T )Qrs

4.16231× 10−5νba
h
e−

EL
kT − e−

EU
kT

i . (5.13)

In this equation, Qrs is the rotational partition function for 300 K. All variables in this

equation for specific molecules can be found on the JPL website. The next step is to extract

the column density and rotational temperature of the molecules from these equations. It

can be seen that in equation 5.12, log(L) is linear in Eu/k. Therefore, a plot of the locus of

the spectral line data on the graph of logL vs. Eu/k should fall on the straight line whose

slope leads to the temperature of the emitting region given by 5.14 and whose intercept is

the column abundance given by 5.15 , where c and m are taken from 5.12 :

Trot = − log e
m

(5.14)

N = 10c ·Qrot. (5.15)

5.6.3 Orion-KL at 850 and 450 µm: LTE Rotation Diagrams

The rotation diagram technique has been applied to the 450 and 850 µm FTS

spectra of Orion-KL. The principal emission arises from the molecules: carbon monoxide

(CO), sulfur monoxide (SO), sulfur dioxide (SO2) and methanol (CH3OH). The technique

can only be applied to the molecules SO and SO2, which provide the sufficient number of

lines for the analysis. The FTS data will be compared with the data from Serabyn [64]

and Shilke et al. [71].

The U of L FTS and CSO spectra of Orion-KL at 450 µm and 850 µm were used for

this analysis. The U of L and CSO FTS spectra were cross-calibrated using the integrated
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CO line intensity. Following Serabyn, a correction for the effects of opacity was taken into

account by multiplying the spectrum by τ/(1 − e−τ ), where τ ranges from roughly 3 for

lowest frequency transitions (∼ 200 GHz), to 6 in midrange (∼ 500 GHz), to 1.2 for the

highest frequency lines (∼ 900 GHz) [64].

To validate the rotational diagram technique, Serabyn’s data was used to generate

rotation diagrams and determine the temperature and column abundance of SO and SO2

from his data. Line areas were determined directly from Serabyn’s paper. The results

are shown in figure 5.16. In these diagrams the opacity was assumed to be zero and the

telescope coupling was 30 %.

A linear least squares fit to the data shown in figure 5.16 yields the following

results: The rotation temperature for the SO molecule is calculated to be (100.56± 5.5) K

and column density is (4.54 ± 0.6) × 1016cm−2. This is in very good agreement with the

temperature quoted by Serabyn of 101 K: the author does not give the column density for

this case. For the SO2 molecule, the rotation temperature is calculated to be (80.4± 12)

K and column density is (7.03 ± 1.7) × 1016cm−2. Serabyn’s result was 93 K for rotation

temperature and 8.0 × 1016cm−2, which falls inside our error bars. The purpose of this

exercise was to validate the rotational diagram technique.

The U of L FTS data has subsequently been analyzed taking into account the

opacity of the SO molecule with τ = 6 for the 450 µm data and τ = 4.5 for the 850 µm

data. The results are shown in figure 5.17.

A linear least squares fit to the data shown in figure 5.17 yields the following

results: The rotation temperature for the SO molecule is calculated to be (85± 23) K and
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Figure 5.16: Rotation diagrams for SO2 (upper plot) and SO (lower plot) reproduced from
Serabyn’s data.
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SO Trot (K) SO col. den. (cm−2) SO2 Trot (K) SO2 col. den. (cm−2)
Serabyn 83± 2 2.2× 1017 93± 5 8× 1016
Schilke 64± 5 (2.3± 0.7)× 1017 187± 4 (6± 0.3)× 1016
UofL FTS 85± 23 (1.3± 3.76)× 1017 242± 29 (5.5± 0.7)× 1016

Table 5.2: Comparison of Rotation Temperatures and Column Densities for two different
molecules: SO and SO2

column density is (1.3 ± 3.76) × 1017cm−2. The rotation temperature for SO2 molecule

is calculated to be (242.83 ± 29) K and column density is (5.53 ± 0.7) × 1016cm−2. The

column density is in good agreement with the Schilke et al. value of 6× 1016cm−2, but the

temperature differs by about 55 K. All temperatures and column densities values are shown

in table 5.2. Our results for SO are in closer agreement with Serabyn’s analysis, while the

SO2 results are in closer agreement with Schilke’s analysis. In the comparison of the two

different FTS measurements, the difference is most likely due to the much wider (200 -

900 GHz) spectral range that Serabyn was able to observe. As discussed above, extremely

poor weather on several observing runs prevented us from obtaining 850 µm measurements.

Overall, our results are closer to the measurements of Schilke, but the error bars are quite

large. This illustrates the difficulty in determining the physical condition in the interstellar

medium.

5.7 Conclusion

This chapter has shown that, with an FTS, it is possible to extract the continuum

and line components from the interstellar medium. Three methods of determining the

model SED have been discussed and it was shown that single band FTS spectroscopy

method is, in principle, superior to dual band photometry or dual band FTS spectroscopy
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(when 450 µm atmosphere is unstable at 450 µm). This chapter also presented the results

of SEDs in the Orion-KL region using two methods: Fitting the continuum to the regions

of lowest spectral line emission in the Orion-KL, and fitting the heterodyne spectrum plus

the continuum term to the FTS spectrum. Although the error bars are large, the derived

SEDs are in agreement with the general SED found for the OMC. Finally, for completeness,

the rotation diagram technique was introduced and the results for the rotation temperature

and the molecular abundance of SO and SO2 from Orion-KL were found to be in close

agreement with previous results. While the resolution of an FTS is at least two orders

of magnitude lower than of heterodyne receiver, it is encouraging that the FTS spectra

yield results for molecular abundances and temperature that are not significantly different

from those determined with a much higher resolution heterodyne technique. The results

presented in this thesis illustrate the potential power of Fourier Transform Spectroscopy as

a diagnostic tool in understanding physical conditions in the interstellar medium.
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Chapter 6

Conclusion and future work

This thesis has addressed the applicability of Fourier transform spectroscopy at

submillimetre wavelengths to the study of the ISM. FTS measurements of the two brightest

regions of the Orion Molecular Cloud, Orion-KL and Orion-S, shown in figure 1.2, obtained

with an FTS, have been presented. This is only the second FTS in operation, which has

been designed specifically for observations at submillimetre wavelengths. As discussed in

the thesis, the classical instrumental line shape of the U of L FTS (ie., the sinc function)

is clearly evident in the spectra. The continuum component has been extracted, which

carries information on the properties of the dust in the ISM. From this analysis it is

possible to determine the dust temperature and the emissivity. The spectra have been

shown to be superior to the earlier results of Serabyn [64], which had ill-defined line shape

and continuum.

The U of L FTS spectra have also been compared with heterodyne spectra obtained

contemporaneously. When the heterodyne spectra are convolved with a sinc function of



123

the appropriate resolution, there is an excellent agreement between heterodyne and FTS

spectra. However, the heterodyne spectra often have ill-defined baselines and therefore

cannot be used to study continuum component of emission.

In this thesis, a model SED of a molecular cloud was used to investigate vari-

ous methods of extracting the dust emissivity from submillimetre wavelength observations.

From this work it was concluded that single band FTS spectroscopy has the best sensitiv-

ity to errors in β, compared to the dual-band SCUBA photometric measurements and the

dual-band FTS spectroscopic measurements, because the atmospheric variations in the 450

µm band are noticeable.

Along the way, two specific aspects of FTS spectroscopy were studied in detail;

cosmic ray removal and apodization. Ten apodization functions have been derived (seven

of them new) that provide a small set from which to choose the optimum tradeoff between

spectral resolution and ringing in the ILS. These 10 functions cover the range from 1.1 to

2.0 of FWHM in steps of 0.1 and it is expected that this set of functions will find use in a

wide range of fields involving Fourier analysis.

6.1 Future work

The Submillimeter Common User Bolometer Array (SCUBA-2) [35, 80] is cur-

rently being developed for use at the JCMT in Hawaii, and it will become operational

in 2006. SCUBA-2 will replace the existing bolometer array detector, SCUBA, which is

limited by the small array size. The new SCUBA-2 camera will feature ∼ 10, 000 pixels

in two arrays and a field of view 8’ [35]. Combined with the increased sensitivity of the
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superconducting bolometers, SCUBA-2 will result in a factor of 1000 increase in mapping

speeds of a compared to its highly successful predecessor [35].

Two auxiliary instruments will be developed for this detector: an imaging FTS

(FTS-2) and a polarimeter. These instruments will open up another dimension in sub-

millimetre astronomy by enabling spectroscopic and polametric studies of a wide range of

astronomical objects, such as infrared galaxies, interstellar mediums, star forming regions,

and planetary atmospheres.

Under the current design, FTS-2 will use ∼2000 pixels, each pixel having over

10 times the sensitivity of the detector that produced the data for this thesis. Since the

mapping time required is given by the following equation [80]:

t =
3.8× 1031

η

µ
A

FOV

¶µ
NEP

∆f ×∆T
¶2

, (6.1)

where η is the observing efficiency, A is the area of the map, FOV is the FTS field of view,

NEP is the detector noise-equivalent-power measure at the bolometer, ∆f is the spectral

resolution in MHz and ∆T is the temperature sensitivity. From this equation, it can be

seen that if each pixel has 10 times more sensitivity, then with 2000 pixels it will be possible

to map the sky 200,000 times faster than with the spectrometer described in this thesis.

FTS-2 will be able to obtain simultaneous, variable, resolution 450 µm and 850

µm wavelength spectra from each point on the sky corresponding to individual pixels in the

array. FTS-2 will use the Mach-Zehnder spectrometer design, which has also been adopted

for the Spectral and Photometric Imaging Receiver (SPIRE) instrument for the European

Space Agency (ESA) Herschel space mission. FTS-2 will exploit two input ports; one port

will view the source while the other port will view the adjacent region of the sky. The
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second port will allow for the automatic subtraction of the atmospheric emission from the

source, on a pixel-by-pixel basis. This will provide exceptional atmospheric correction

which will enable FTS-2 to determine the properties of sources that are only few tens of

mJy’s in brightness. FTS-2 will allow astronomers to determine the properties of dust in

the ISM to a much greater accuracy than is currently possible. In particular, its unique

ability to separate the continuum and line components emission will remove one of the

principal uncertainties in this field of research.

The work on the apodizing and the SED techniques in this thesis will find direct

application with this new, cutting edge detector system.
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Appendix A

Unit Conversion

Unit conversion from wavelength to frequency (Hz or wavenumber) can be con-

fusing; this appendix describes the various conversion factors. Wavelength is defined as

c = νλ, where ν is the frequency in Hertz (Hz), λ is the wavelength (m), and c is the speed

of light. It is customary to express the wavelength in the units of nanometers (nm) or mi-

crometers (µm) since. In Fourier transform spectroscopy, the natural unit of spectral scale

is inverse pathlength, or wavenumber, σ = 1
λ (cm

−1). The wavenumber scale can simply

be converted to frequency by multiplying by speed of light, (ie., is to say that ν = cσ. The

values of wavelength, wavenumber, and frequency corresponding to the 450 and 850 µm

spectra reported in this thesis, are given below.
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Band centre Left edge Right edge
λ (µm) 450 476 429

σ (cm−1) 22.2 21 23.3

ν (GHz) 666 630 700

Table A.1: Unit conversion between wavelength, λ, wavenumber, σ and frequency, ν for 450
µm waveband.

Band Centre Left edge Right edge
λ (µm) 850 909 833

σ (cm−1) 11.6 11 12

ν (GHz) 353 330 360

Table A.2: Unit conversion between wavelength, λ, wavenumber, σ and frequency, ν for 850
µm waveband.
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Appendix B

A list of acronyms

AIG - Astronomical Instrumentation Group

CSO - Caltech Submillimeter Observatory

CWT - Continuous Wavelet Transform

ESA - European Space Agency

FTS - Fourier Transform Spectroscopy

FWHM - Full Width Half Max

IDL - Interactive Data Language

ILS - Instrumental Line Shape

ISF - Integral Shaped Filament

ISM - Interstellar Medium

JCMT - James Clerk Maxwell Telescope

JPL - Jet Propulsion Laboratory

KPNO - Kitt Peak National Observatory
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LTE - Local Thermal Equilibrium

MRA - Multi-resolution Analysis

NOAO - National Optical Astronomy Observatory

OMC - Orion Molecular Cloud

PCF - Phase Correction Function

RA - Right Ascension

SCUBA - Submillimeter Common User Bolometer Array

SED - Spectral Energy Distribution

SPIRE - Spectral and Photometric Imaging Receiver

U of L - University of Lethbridge

ZPD - Zero Path Difference
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