
661

Publications of the Astronomical Society of the Pacific, 119: 661–668, 2007 June
� 2007. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A.

Control and Communications System for Remote Operation of an Infrared Radiometer

Ian S. Schofield and David A. Naylor

University of Lethbridge, Lethbridge, Canada; ian.schofield@uleth.ca, naylor@uleth.ca

Received 2007 April 4; accepted 2007 May 8; published 2007 June 7

ABSTRACT. An infrared radiometer (the Infrared Radiometer for Millimetre Astronomy, IRMA) has been
developed to measure the amount of water vapor in the atmosphere through its emission at 20mm. Water vapor
is the major contributor to signal phase error in submillimeter interferometric arrays and the principal source of
opacity for telescopes operating at infrared wavelengths. While earlier versions of IRMA required hands-on
operation, the desire to operate at remote and often hostile sites necessitated the development of sophisticated
and robust software. IRMA is a distributed, real-time control and data acquisition system spread across three
different computers, and can be controlled remotely over the network by command scripts or a graphical user
interface client program.

1. INTRODUCTION

Infrared spectroscopic measurements of the atmosphere
above Mauna Kea, obtained using a high-resolution Fourier
transform spectrometer, show that virtually all of the atmo-
spheric opacity in a band around 20mm arises from rotational
transitions of water vapor (Naylor et al. 1984). Since no other
common atmospheric molecules exhibit transitions in this band,
it is an ideal indicator of atmospheric water vapor content. We
have developed IRMA, a remotely controlled, fully steerable,
infrared water vapor monitor. IRMA is designed to perform
accurate radiometry in the 20mm band, and by the use of an
atmospheric model, to retrieve the atmospheric water vapor
column abundance, expressed in terms of precipitable water
vapor (PWV). IRMA has the potential to be a useful tool in
the correction of water vapor–induced phase errors in submil-
limeter interferometry and also in a site testing, observation
planning, and correction role for infrared and submillimeter
telescopes.

The optical design of IRMA is presented elsewhere (Naylor
et al. 2003). In this paper, we summarize the key features of
the radiometer and discuss the technical details surrounding the
control and communication system, which has been developed
to allow operation at remote and often hostile environments,
including Chile and Antarctica. Designed as a compact, low-
power, semiautonomous instrument capable of receiving and
executing batch instructions over the Internet, IRMA required
a sophisticated, fine-grained control system that provided max-
imum operational flexibility. Furthermore, the software had to
be sufficiently robust to allow the instrument to extricate itself
from error conditions, such as the failure of any one of its
subcomponents. This paper discusses the development, struc-
ture, and operation of the IRMA control system, as well as the
unique challenges of developing astronomical instrumentation

software for an embedded platform, instead of the more con-
ventional PC workstation.

2. BACKGROUND

The first IRMA was installed and tested at the James Clerk
Maxwell Telescope (JCMT) atop Mauna Kea, Hawaii, in 1999
December (Smith et al. 1999). The encouraging results of these
early measurements spurred further refinements in the design
and resulted in a more detailed comparison of methods of mea-
suring water vapor above Mauna Kea (Chapman et al. 2004).
It quickly became evident that IRMA had the potential to be
a useful tool in site testing potential locations for future large
ground-based telescopes, such as the northern Chilean Atacama
Desert some 5000 m above sea level, or Antarctica. These
remote locations are among the driest regions on Earth, making
them ideal for infrared and submillimeter wavelength astro-
nomical observations. However, unlike the well-resourced
JCMT facility, the demands of operating in a harsh climate, at
a remote site, and with minimal power and communication
resources made it necessary to reconsider the control and com-
munication requirements of IRMA.

3. IRMA OVERVIEW

In order to place the IRMA control and communication in
context, it is first necessary to present a brief overview of the
radiometer and a summary of the key subcomponents of IRMA
that interface with the computers.

In its site-testing role, IRMA is designed to operate at a high
altitude and remote location, where it will encounter extremes
of temperature and hostile weather conditions, both potentially
damaging to electronic components and circuitry. Figure 1
shows the compact and lightweight IRMA radiometer deployed
near the Las Campanas Observatory in Chile. Also shown is

662 SCHOFIELD & NAYLOR

2007 PASP,119:661–668

Fig. 1.—IRMA radiometer and altitude-azimuth mount stationed at the Las Campanas Observatory, Chile.

the altitude-azimuth (alt-az) mount that allows IRMA to point
to any part of the sky. This compact format was designed to
accommodate direct mounting of the radiometer itself (i.e.,
without its alt-az mount) to a telescope dish in interferometric
applications. The optical system, shown in Figure 2, consumes
most of the available volume. The remainder of the space is
occupied by the various electronic subsystems.

The early versions of IRMA, which were proof-of-concept
instruments and thus not designed for remote operation, con-
tained hard-coded instruction sequences that the operator could
call on demand. In the latest version, IRMA III (hereafter,
simply referred to as IRMA), the design philosophy was
changed to allow the operator access and control of all hardware
components in order to permit operation at remote locations.
In the new design, the operator can modify the behavior of the
unit if hardware components are changed or upgraded (e.g.,
installation of a new Stirling cooler or blackbody), install work-
arounds in the event of component failure (e.g., inability of the
Stirling cooler to hold a certain base temperature due to partial
loss of vacuum in the cryostat or failure of a temperature diode),
or simply have the option to do something novel with the
instrument. Fine-grained control of each of the subcomponents
of IRMA, and the ability to do so in any sequence, required
the development of a custom scripting language: IRMAscript.

3.1. IRMA Hardware

Figure 3 gives a schematic overview of various IRMA hard-
ware components and their means of interface with the IRMA
computers. The IRMA chassis consists of an 28 kg aluminum
box (roughly the size of a shoe box) suspended between the
forks of an alt-az mount. The alt-az mount allows IRMA to
rotate 360� in azimuth and 180� in altitude (i.e., elevation) to
access any sky position. The extended range in elevation allows
the device to be tipped upside down to protect it during severe
weather conditions. Directly behind the entrance aperture is a
motorized sliding shutter. The shutter has a dual role: it seals
the IRMA unit, preventing moisture and dust from entering the
device when not observing, and it contains a heated blackbody
target that serves as a calibration source for the radiometer.

3.1.1. Optical Path

Inside the radiometer, light reflects from a 100 mm diameter,
f/1, 90� off-axis parabolic mirror and is brought to a focus on
an infrared photoconductive detector. The detector is attached to
the tip of a cold finger by a mechanical clamp and is cooled to
its operating temperature by means of a Stirling-cycle cryocooler.
The incoming optical beam passes through a five-blade reflective
chopper wheel, an antireflection-coated ZnSe window, and a

REMOTE IR RADIOMETER 663

2007 PASP,119:661–668

Fig. 2.—Cutaway view of the IRMA radiometer.Left to right: Parabolic mirror, reflective chopper and associated electronics, vacuum vessel, Stirling cooler.
Lower shelf from left to right: Stirling cooler controller, IRMA power supply. Electronics board and control computer are attached to the reverse side of the rear
metal plate.

narrowband infrared filter before reaching the detector. A single
notch located on the circumference of the chopper wheel ensures
samples are triggered on the same blade, thus eliminating un-
certainties associated with blade-to-blade variations in reflectance
and emittance.

3.1.2. Shutter/Calibration Source

The shutter/calibration source consists of a hollow aluminum
block that is mounted in a track and driven by a lead screw.
At opposite ends of the track are two slotted optical switches,
both of which are mapped to two digital input-output (DIO)
lines of the computer subsystem. Metal tabs that actuate the
optical switches are placed at opposite sides of the shutter. The
control computer polls these lines in order to determine when
the shutter movement has completed.

The calibration source attached to the underside of the shutter
consists of a carbon-black, enamel-textured epoxy coating de-
posited on a thin, metallic film heater. Embedded beneath the
epoxy layer are two silicon diodes that act as temperature sen-
sors and provide thermometry with an accuracy of�0.1 K.
The coating has a high emissivity at infrared wavelengths. The
blackbody is heated by passing an electrical current through

the film. When the shutter is closed, the blackbody completely
covers the optical aperture and is used to calibrate the radi-
ometer. Typically, a two-point temperature calibration is per-
formed: ambient and∼50�C. It is also possible to perform
calibrations at temperatures between these extremes.

3.1.3. Stirling Cooler/Vacuum Vessel

The detector is cooled to its operating temperature of
∼70 K using a Stirling-cycle cryocooler (Honeywell-Hymatic
NAX025-001). A custom-designed vacuum vessel surrounds
the cold finger of the cryocooler. The vacuum chamber has
four inputs. Radiation enters through an antireflection-coated
ZnSe window seen at the top of Figure 2. The input imme-
diately to the right carries the detector electrical signal. The
input to the lower right connects to the vacuum pinch-off tube,
which provides a permanent vacuum seal.

The infrared detector is attached to the tip of the cold finger,
and its temperature is servo-controlled by means of a collocated
temperature diode. In order to reach its operating temperature,
the internal pressure must remain below 10�4 mbar. Given the
large surface area–to-volume ratio of the vacuum vessel, this
is one of the most challenging aspects of the design. Individual

664 SCHOFIELD & NAYLOR

2007 PASP,119:661–668

Fig. 3.—IRMA hardware/software structure showing three primary subsystems: the command processor (CP), the master controller (MC), and the altitude-
azimuth controller (AAC), each of which are hosted on their own computer. Scripted command sequences are transmitted to the CP over the network either
manually or by means of an optional graphical client program. The CP translates each scripted command statement into lower level IRMA command packetsand
sends them to the IRMA MC over a network link. Altitude-azimuth commands are dispatched by the MC to the AAC over a serial link. System functionality is
divided between the MC and AAC; the MC is responsible for controlling and reading data from sensors, while the AAC looks after motion control of the alt-az
mount.

components are carefully cleaned, and once assembled, the unit
is heated and pumped to achieve pressures below �82 # 10
mbar. In order to reach its target lifetime of 5 years, the leak
rate can be no greater than mbar cm�2 s�1.�151 # 10

3.1.4. Detector

Infrared radiation is detected by a mercury cadmium telluride
(MCT) photoconductive detector (Kolmar Technologies, Inc.).
The detector is optimized for observations at∼20 mm. A nar-
rowband filter (Lee et al. 1996) placed immediately in front of
the detector limits the spectral response of the system to a
bandwidth of∼2 mm (∼50 cm�1), carefully chosen to match
the emission spectrum of water vapor. The detector conductance
is a function of the incident radiant flux and is converted to a
voltage using a conventional constant bias current circuit. A
lock-in amplifier converts the modulated signal voltage to a
DC voltage, which is digitized by an analog-to-digital converter
(ADC).

3.1.5. Analog-to-Digital Converter

The heart of the IRMA data acquisition system is a four-
channel, 24 bit delta-sigma ADC (Cirrus Logic CS5534). In
addition to the infrared signal, the ADC also samples, by means
of an analog multiplexer (and thus at lower rates), the atmo-
spheric pressure, relative humidity, and eight temperature chan-
nels. The ADC relies on massive oversampling, noise shaping,
and digital filtering to achieve near 24 bit sample resolution at
the expense of longer sample integration times. Digitization of
the radiometer signal at a 22 bit resolution requires an inte-
gration time of 535 ms. For a wind speed of 10 m s�1, the
atmosphere passing across a 10 m diameter telescope varies
on a timescale of about 1 s, sufficient for the ADC to acquire
stable readings.

3.1.6. GPS

Accurate time and positional information is provided by a
GPS receiver (GlobalSat DK-ER101). The GPS board contin-
uously emits a formatted serial string containing positional and

REMOTE IR RADIOMETER 665

2007 PASP,119:661–668

time data. The master controller, when queried for the current
GPS time or commanded to synchronize its onboard real-time
clock (RTC), parses the appropriate data transmitted by the
GPS board.

3.1.7. Control Computers

Limited space and electrical power, and anticipated harsh
operational conditions, led to the selection of the Rabbit family
of 8 bit microcontroller modules (Rabbit Semiconductor, Inc.)
over conventional PCs. The non-networked RCM2010 core
module was selected to control the alt-az mount, while the
networked RCM2100 module was chosen to perform instru-
ment control and data acquisition. The alt-az microcontroller
controls motion on the elevation and azimuth axes by means
of a digital motor controller (Maxon Motor 1QEC50V) driving
twin brushless DC motors (Maxon EC167129). Alt-az motion
control was off-loaded onto a separate microcontroller to reduce
computational load in the main controller and reduce the num-
ber of control lines passing through the umbilical cable con-
necting the detector unit to the alt-az base.

Both controller modules are based on the Rabbit 2000 8 bit
microprocessor and provide 40 lines of TTL-level DIO, of
which eight can be reassigned to four serial IO channels. Like
other small, embedded processor boards, the compiled binary
executable resides in the controller module’s flash memory and
must be compiled using a Windows-based cross-compiler, Dy-
namic C.1

The Rabbit 2000 is based on the Zilog Z-80/Z-180 archi-
tecture. Consequently, the Rabbit 2000 shares a similar register
layout, memory-addressing modes, and machine instructions
with the Zilog processor. The primary difference between the
two processors is that the Rabbit 2000’s register layout is op-
timized for 16 bit arithmetic and memory manipulation, unlike
the original Z-80 architecture. This feature makes the Rabbit
2000 more compatible with C language compilers, which are
typically biased toward 16/32 bit arithmetic and memory
access.

4. CONTROL SYSTEM SOFTWARE

Recent astronomical instrumentation control systems (e.g.,
automated observatories) have relied on distributed processing
in order to share the computational load among multiple com-
puters, and on real-time scheduling for hardware control (Spil-
lar et al. 1993; Anderson et al. 1999). Typically, this has in-
volved x86 PC hardware running under DOS or UNIX-like
operating systems, such as LynxOS, or more recently, GNU/
Linux. Furthermore, some of these systems are controlled
through custom control scripting languages (Stark et al. 2001).
The IRMA control system follows this heritage by the nature
of its distributed design, scripting support, and real-time per-

1 Dynamic C Users Manual 2006, Rabbit Semiconductor, Inc.

formance. Use of embedded microcontroller modules in place
of PCs sets IRMA apart.

IRMA’s control software is divided into three software mod-
ules: the command processor (CP), master controller (MC),
and alt-az controller (AAC). The CP runs on a Linux-equipped
PC, while the MC and AAC run on separate Rabbit 2000
microcontroller modules. An optional graphical user interface
(GUI) front-end client and a stand-alone watchdog device are
also included.

The CP translates high-level scripted command sequences
into low-level IRMA instructions and passes them to the MC.
The MC decodes these packets and executes them in the hard-
ware. The CP also logs status and error messages received from
the MC, which the MC generates after the execution of each
low-level instruction packet. Communication between the CP
and MC is performed over the observation site’s Ethernet net-
work. Where necessary, the MC passes alt-az commands along
to the AAC for execution, using a serial channel intercon-
necting the two modules. The AAC handles all functionality
relating to positioning of the alt-az mount.

The IRMA GUI client software provides the operator with
an easy-to-use interface that features the most commonly used
features of the radiometer. The need for a GUI was identified
early on, because writing command scripts is a tedious and
error-prone task. Fundamentally, the GUI is a script generator
that calls from a collection of generalized scripts and custom-
izes them with the operator’s requested parameters.

The CP and its Linux-based host PC constitute a commu-
nications gateway to IRMA. All commands sent to and received
from the instrument pass through the CP host. The CP host
provides ample disk space for data storage, as well as sufficient
computational power to drive script language interpretation.
Moreover, it provides a litany of network services that allow
versatile and secure access to IRMA over the Internet. Off-
loading script interpretation and data archiving onto the PC
leaves the MC and AAC free to control and acquire data from
the radiometer.

Invoking command scripts to control IRMA while logged
into the CP host over a secure shell (SSH) connection is one
of the most simple and direct ways to control the instrument.
However, it is also the least intuitive, because it involves com-
mand-line commands. Running the GUI remotely via a remote
X-session was seen as the preferred solution but has proven
difficult to achieve, due to firewall restrictions and limited band-
width at test site installations. To alleviate these problems, the
GUI can be run on the operator’s computer. The command
scripts generated by the GUI are forwarded to the remote CP
host via secure copy (SCP). This scheme requires that addi-
tional software run on the remote CP host alongside the CP
software in order to dispatch scripts to the CP as they arrive
and return feedback to the GUI. Large time latencies when
sending commands from the remote GUI has been the primary
weakness in this arrangement.

666 SCHOFIELD & NAYLOR

2007 PASP,119:661–668

Fig. 4.—IRMA software task structure. The heartbeat and dispatcher task (solid boxes) run continually. When called on to perform a scan, the dispatcher task
enables the scan task, metronome task, and data collection interrupt service routine (dotted boxes). The scan task sleeps unless woken up by the metronome task
at a fixed interval, upon which the scan task sends a data packet to the CP to be archived. A notch on the reflective chopper triggers the interrupt service routine
that performs the actual analog-to-digital conversion.

4.1. Real-Time Multitasking

Both the MC and AAC use themC/OS-II (Micrium, Inc.)
real-time kernel as the means to achieve real-time preemp-
tive multitasking on the Rabbit 2000 hardware.mC/OS-II
provides a small, efficient kernel in which to run software
tasks that are similar to processes used in Linux or UNIX.
Priority-based scheduling, coupled with a minimal operating
system, allowsmC/OS-II to guarantee that each task gets
serviced in a predictable amount of time, thus providing
real-time performance.

Both the MC and AAC are designed as a set of multiple,
independently running tasks. In order for the IRMA system to
operate responsively, the MC and AAC must process command
requests expeditiously, even if they are in the midst of executing
a job. Therefore, in both the MC and AAC software, a separate
task runs in the background, listening for incoming commands.
When a command is received, the task listening for incoming
commands dispatches the request to another task waiting dor-
mant in the background and then returns to listening.

Figure 4 shows the software task structure of the MC soft-
ware; each block represents its respective process. On startup,
the dispatcher task and heartbeat task run concurrently. The
heartbeat task, the highest priority task of all the tasks, sends
a network packet every 30 s to the remote power switch (Da-
taprobe IBoot), thus preventing the device from cycling the
power to MC and AAC. Likewise, the dispatcher task runs
continuously in the background, listening for incoming com-
mand packets and executing them when they arrive. Most short-
duration requests (e.g., reading the internal temperature sen-
sors) are handled within the dispatcher task.

Scanning, which involves sampling the IR detector on receipt
of a notch interrupt signal from the chopper wheel, is a long-
duration function and must be run within a separate task. The
scan task, normally dormant, is awoken by the dispatcher task,
as indicated by the arrow in Figure 4. The scan task in turn calls
a timing task (called the metronome task) that monitors the num-
ber of data points collected by an interrupt service routine (ISR).
When the number of data points required to populate a data
packet has been reached, the metronome task signals the scan
task to bundle the data in a packet and pass it to the CP software.
During scans, the CP forks a separate process that collects and
stores data packets generated by the MC.

The reflective chop wheel triggers the data collection ISR,
which in turn commands the ADC to sample the infrared signal.
These samples are stored in shared memory that the scan task
can access. The ISR is written primarily in Rabbit 2000 as-
sembly language in order to maximize execution speed. The
sum total of the time spent instructing the ADC to sample the
signal channel is 690ms. No more than 310ms at any one time
is spent within the ISR, because it has multiple entry points
and is structured as a state machine.

Communication between tasks is performed using global var-
iables and flag signals, a mechanism similar to POSIX signals
(Stephens 1992). Unlike conventional multitasking operating
systems that time-slice among the competing running pro-
cesses, priority-based multitasking used inmC/OS-II must be
explicitly performed by strategically placing context-switching
mechanisms inside the program. These mechanisms involve
using nonblocking timed sleeps, signaling sleeping tasks when
a requested shared resource becomes available (e.g., sema-

REMOTE IR RADIOMETER 667

2007 PASP,119:661–668

phores), and waiting on flags raised by other tasks. In all cases,
the waiting task is made dormant by the scheduler, so it con-
sumes no CPU cycles, and is awoken by the scheduler when
the appropriate conditions are met.

4.2. Implementation Languages

The MC and AAC are both implemented in Dynamic C, a
vendor-supplied version of C similar to ANSI C (Kernighan
& Ritchie 1988) but tailored to the capabilities of Rabbit 8 bit
processor modules. Numerous libraries, including their source
code, are provided by the vendor to provide system functions
to access onboard hardware. By replacing the vendor-supplied
parallel port digital IO functions with Rabbit 2000 assembly-
language macros, the speed of execution of DIO operations are
increased by a factor of 4. Dynamic C has a simple mechanism
for embedding assembly code within C, or vice versa. Other
than the library definition/inclusion mechanism, which is mark-
edly different from that found in ANSI C, both dialects share
many similarities.

The script language interpreter, the CP, is implemented in
Perl (Wall et al. 2000), a popular interpreted scripting language
that allows for rapid application development, powerful string
and regular expression handling, and easy-to-use modules that
encapsulate advanced functionality. This makes maintaining the
system’s code base relatively easy; an important factor when
considering software maintenance by less experienced
programmers, many of whom do not have computing science
backgrounds.

4.3. System Control Scripting Language

IRMA is primarily controlled by a custom-designed inter-
preted language called IRMAscript. A graphical interface was
later implemented to provide a simple point-and-click interface
that encapsulated the most commonly used functions of the
instrument. Custom control languages for scripting complex
control sequences of complex instrumentation (especially re-
motely controlled observing instruments like IRMA) have a
long history. Remote automated observatories at Antarctica,
such as the Antarctic Submillimeter Telescope and Remote
Observatory (AST/RO; Stark et al. 2001) and the earlier In-
frared Photometer Spectrometer (IRPS; Ashley et al. 1996),
both saw the need for complex control systems driven by cus-
tom interpreted scripting languages.

The language itself is very simple, consisting of primitive
instrument commands and control structures (e.g., iterative
loops and if-then branching constructs). IRMAscript also sup-
ports simple arithmetic, time/date operations, console/file IO,
global variables, and time delays. Care was taken to make it
easy to read and familiar to those with rudimentary program-
ming experience. Syntactically, it is similar to PASCAL and
Perl. The following snippet of IRMAscript code illustrates the

use and form of command scripts used within IRMA. This
example commands IRMA to open the blackbody shutter, while
setting a 40 s time-out period in which to abort the process if
the shutter is jammed.

assign $moving 3

assign $sOpen 2

assign $sClose 3

$currTime p rtc read epoch_time

eval $timeout p $currTime � 40

shutter state open

do

$x p shutter read limit

print $x

$currTime p rtc read epoch_time

print ’CURR_TIME:, \s, $currTime, \n’

if shutter hasn’t opened within 40 secs,

assume that it’s jammed or disconnected.

Reverse shutter direction and exit

if $currTime 1 $timeout

shutter state close

goto DONE

endif

wait 2

while $x !p $sOpen

label DONE

The entire functionality of IRMA is contained in a library of
scripts. These short scripts enable precise control of each of
the instrument subsystems (e.g., reading date/time from the
GPS or slewing the alt-az mount to an R.A.-Decl. coordinate).
The script library can change and grow as hardware compo-
nents are modified and new instrument operation modes are
developed. The GUI draws from this library, associating graph-
ical controls with respective scripts and customizing them ac-
cording to the operator’s input parameters.

5. CONCLUSION

The IRMA control system employs a modular approach,
distributing the processing among three processors in its orig-
inal design. Rabbit 2000 8 bit microcontrollers, chosen for their
compact size, low cost, and low power consumption, are em-
bedded within the instrument and are responsible for system
control and data acquisition. Moreover, the Rabbit microcon-
trollers are tolerant of low temperatures, having been success-
fully operated at�80�C. An IRMA unit is currently being

668 SCHOFIELD & NAYLOR

2007 PASP,119:661–668

prepared for deployment in Antarctica in 2008. The MC module
handles data acquisition and network communication, while
the alt-az controller performs positioning and motion control
of the altitude-azimuth mount. A PC hosts the command pro-
cessor software module that acts as the human-machine inter-
face, interpreting human-readable statements into machine-
readable binary packets.

6. ACKNOWLEDGEMENTS
The authors would like to thank the following individuals

for their contributions to the development of the IRMA project:
P. A. R. Ade, B. G. Gom, R. R. Phillips, G. J. Smith, G. J.
Tompkins, and C. Tucker. The authors also acknowledge fi-
nancial support from NSERC, ASRA, and the University of
Lethbridge.

REFERENCES

Anderson, J. M., et al. 1999, PASP, 111, 737
Ashley, M. C., Brooks, P. W., & Lloyd, J. P. 1996, Pub. Astron. Soc.

Australia, 13, 17
Chapman, I. M., Naylor, D. A., & Phillips, R. R. 2004, MNRAS, 354,

621
Kernighan, B. W., & Ritchie, D. M. 1988, The C Programming Lan-

guage (2nd ed.; Englewood Cliffs: Prentice Hall)
Lee, C., Ade, P. A., & Haynes, C. V. 1996, in Proc. 30th ESLAB

Symp., Submillimetre and Far-Infrared Space Instrumentation, ed.
E. J. Rolfe & G. Pilbratt (ESA SP-388; Paris: ESA), 81

Naylor, D. A., et al. 1984, PASP, 96, 167
———. 2003, Proc. SPIE, 4820, 908
Smith, G. J., Naylor, D. A., & Feldman, P. A. 1999, Int. J. Infrared

Millimeter Waves, 22, 661
Spillar, E. J., et al. 1993, PASP, 105, 616
Stark, A. A., et al. 2001, PASP, 113, 567
Stephens, W. R. 1992, Advanced Programming in the UNIX Envi-

ronment (Reading: Addison-Wesley)
Wall, L., Christiansen, T., & Orwant, J. 2000, Programming Perl (3rd.

ed.; Beijing: O’Reilly)

