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Apodizing functions are used in Fourier transform spectroscopy (FTS) to reduce the magnitude of the sidelobes
in the instrumental line shape (ILS), which are a direct result of the finite maximum optical path difference in
the measured interferogram. Three apodizing functions, which are considered optimal in the sense of produc-
ing the smallest loss in spectral resolution for a given reduction in the magnitude of the largest sidelobe, find
frequent use in FTS [J. Opt. Soc. Am. 66, 259 (1976)]. We extend this series to include optimal apodizing func-
tions corresponding to increases in the width of the ILS ranging from factors of 1.1 to 2.0 compared with its
unapodized value, and we compare the results with other commonly used apodizing functions. © 2007 Optical
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Society of America
OCIS codes: 300.6300, 300.3700.

1. INTRODUCTION

It is common practice in Fourier transform spectroscopy
to multiply the measured interferogram by an apodizing
function in order to reduce the amount of ringing present
in the resulting instrumental line shape (ILS) [1]. Many
apodizing functions have been reported in the literature
[2-5], and practitioners often make their choice without a
clear understanding of the role of the function on the in-
dependence of the resulting spectral data points [3].
While purists would question the need for apodizing in
the first place, the reduction in the amplitude of the sec-
ondary maxima/minima of the ILS, albeit at the cost of
lower spectral resolution, is often desired. In this paper
we expand on the work of Norton and Beer [3,4] to gener-
ate a family of apodizing functions that are close to opti-
mum, in the sense that, to a large degree, they preserve
the orthogonal properties of the sinc function, provide
near optimum reduction in the amplitude of the second-
ary maxima/minima for a given decrease in spectral reso-
lution, and are simple to compute.

2. BACKGROUND

The interferogram, I(6), of a polychromatic source, B(o),
as measured with an ideal interferometer can be written
as [1]

I(6) = f B(0)[1 + cos(2mod)]do, (1)

where & is the optical path difference (cm) between the
two interfering beams and o is the frequency expressed in
wavenumbers (cm™!). It is customary to neglect the con-
stant (DC) term in Eq. (1), in which case the spectrum is
recovered via the inverse cosine Fourier transform:
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B(O’)=f I(d)cos(2mod)ds. (2)

In practice, interferograms can only be measured out to
finite optical path differences determined by the length of
the translation stage of the interferometer. In the case of
symmetrical optical path difference limits of +L, Eq. (2)
becomes

+L
B(O’):f I(6)cos(2mad)d s,
L

which is equivalent to multiplying Eq. (2) by the boxcar
function:

=1, |8l <L

I1(s5) =0, |8| > L.

In Fourier analysis, multiplication in the spatial domain
is equivalent to convolution in the spectral domain [1].
The effect of measuring the interferogram out to finite
path differences is thus equivalent to convolving the in-
put spectrum with the Fourier transform of the boxcar
function:

+L
JH{IL(o)} = J cos(2mod)d s
-L

2L sin(2moL)
- 2moL

= 2L sinc(2molL),

which is the well-known sinc function. The sinc function
has a full width at half maximum (FWHM) of 0.603/L
and is characterized by a series of secondary lobes of
slowly decreasing amplitude, the amplitude of the first

© 2007 Optical Society of America



D. A. Naylor and M. K. Tahic

minimum being -21.7% of the main lobe. The goal of
apodizing is to decrease the amplitudes of the sidelobes
associated with the sinc function at the cost of increasing
the FWHM of the ILS (i.e., decreasing the spectral reso-
lution). Apodizing is readily accomplished by multiplying
the interferogram with an apodizing function, A(5), whose
Fourier transform, when multiplied by any existing
apodization (e.g., due to divergence or vignetting of the
beams within the interferometer), becomes the new ILS.

3. COMPARING APODIZING FUNCTIONS

During his extensive study Filler [2] devised a graphical
method for comparing different apodizing functions and
their corresponding ILS. This method graphs the normal-
ized height of the absolute largest secondary lobe of the
ILS, relative to the height of the absolute largest second-
ary lobe of the sinc function, against the FWHM of the
ILS, again relative to the FWHM of the sinc function.
(The absolute largest secondary lobe of an ILS need not
necessarily be the first one and could be either a maxi-
mum or a minimum.) Filler introduced two families of
apodizing functions, D (8) and E (5) (where & is the opti-
cal path difference out to a maximum value of L), which
are defined as

1) 7o 3mé
D, —|=cos| — | + acos| — |, Osa<l,
L 2L 2L

) T 276
E,|=]=1+1+a)cos| — | + acos| — |, O<sas<l,
L L L

which he considered to give superior performance to other
commonly used functions. Norton and Beer [3] extended
this analysis and introduced the functions, P, ,(8), vari-
ants of the E (5) family, where

) T 26
P,, Z =1+p+(1+ a)cos f + «a cos T s

-lsas<1l; Osp=1.

While the functions P were judged to be superior to both
D and E, by their loci on the Filler diagram, their conver-
gence was rather slow. This provided the impetus for
Norton and Beer to explore other families of apodizing
functions, which led them to the generic form

Table 1. Coefficients of the Original Norton-Beer
Apodizing Functions

FWHM Co c C, c,
1.0 1 0 0 0
1.2 0.384093  -0.087577  0.703484 0
14 0.152442  -0.136176  0.983734 0
1.6 0.045335 0 0.554883  0.399782
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Fig. 1. (Color online) The profile of the extended apodizing
functions.

-l

where ECizl, n=0,1,2,3... (3)
i=0

Norton and Beer used Eq. (3) to generate three functions
corresponding to weak, medium, and strong apodization
that produced near optimal reduction in the amplitude of
the sidelobes for increases in the FWHM of the ILS corre-
sponding to factors of 1.2, 1.4, and 1.6, respectively. The
authors found no significant improvement in performance
for n>4, and in all cases C3=0. For completeness the co-
efficients of these three apodizing functions are presented
in Table 1. The authors went on to show that the loci of
these functions, when plotted on the Filler diagram, did
not lie below the empirically boundary described by

0

w W \2
log ~1.939-1.401| — |-0597| — |, (4)
W, W,

0 0

where h/h is the absolute peak of the largest secondary
maximum relative to that of the sinc function and W/W,,
is the ratio of the FWHM of the resulting ILS, again rela-
tive to that of the sinc function. The authors issued a chal-
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Fig. 2. (Color online) The corresponding ILS of the extended

apodizing functions in ascending order. The lowest trace shows

the sinc function for reference.
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Table 2. Coefficients, C;, of the Extended Norton-Beer Apodizing Functions
FWHM Co c, Csy C, Ce Cs
1.1 0.701551 -0.639244 0.937693 0 0 0
1.2 0.396430 -0.150902 0.754472 0 0 0
1.3 0.237413 -0.065285 0.827872 0 0 0
14 0.153945 -0.141765 0.987820 0 0 0
1.5 0.077112 0 0.703371 0.219517 0 0
1.6 0.039234 0 0.630268 0.234934 0.095563 0
1.7 0.020078 0 0.480667 0.386409 0.112845 0
1.8 0.010172 0 0.344429 0.451817 0.193580 0
1.9 0.004773 0 0.232473 0.464562 0.298191 0
2.0 0.002267 0 0.140412 0.487172 0.256200 0.113948

lenge to the mathematically minded to prove that such a
boundary exists.

4. EXTENDED APODIZING FUNCTIONS

In this paper, we extend the work of Norton and Beer to
generate 10 apodizing functions of the family described by
Eq. (3), which correspond to FWHM of the ILS ranging
from 1.1 to 2.0 in steps of 0.1. Seven of these functions are
new; three represent minor changes to those given earlier.

The new apodizing functions were determined by find-
ing the best set of coefficients C; in Eq. (3) that minimize
the magnitude of the largest sidelobes of the ILS for a tar-
get FWHM. The coefficients were found using an amoeba
minimization routine written in IDL [6]. This routine
uses the downhill simplex method [7], which does not re-

quire knowledge of the derivative of the function to be
minimized and therefore finds frequent use in complex
models.

The first step was to choose a target FWHM with ref-
erence to the FWHM of the sinc function, for example 1.3,
and by iterative adjustment of C; to minimize the magni-
tude of the largest secondary lobes so that the function
would fall on or below the empirical line given by Eq. (4).
Each iteration involved computing the Fourier transform
of the apodizing function [Eq. (3)] and then determining
the magnitude of the largest sidelobe of the resulting ILS.
Upon convergence, the program returned the set of coef-
ficients, C;, that correspond to the minimized function.
The number of terms, n in Eq. (5), required to achieve
convergence depended on the degree of apodization and
varied from 3 to 5 for FWHMs ranging from 1.1 to 2.0.

Table 3. FWHM, Relative Height with Respect to the Peak of the ILS,”and Position in Units of 1/L%f the
First Five Minima of the Apodizing Functions Presented in This Paper

Relative
FWHM FWHM hq hy hg hy hs
1.0 0.60364 -0.217232 -0.091325 -0.057973 -0.042479 -0.033525
0.715525 1.736325 2.742149 3.745112 4.747042
1.1 0.66420 -0.096312 -0.075860 -0.050756 -0.037757 -0.029987
0.750012 1.713789 2.726237 3.733150 4.737500
1.2 0.72424 -0.055039 -0.045200 -0.031224 -0.023451 -0.018701
0.815562 1.734427 2.737289 3.740819 4.743405
1.3 0.78458 -0.027229 -0.026187 -0.019615 -0.015065 -0.012127
0.893129 1.747848 2.741476 3.743089 4.744947
14 0.84468 -0.013897 -0.013639 -0.012602 -0.010128 -0.008296
0.990710 1.744366 2.731459 3.734965 4.738350
1.5 0.90512 -0.006740 -0.005233 -0.006337 -0.005274 -0.004388
1.093694 1.794395 2.755126 3.750099 4.749515
1.6 0.96542 -0.002756 -0.001781 -0.002705 -0.002569 -0.002242
1.201594 1.885519 2.770838 3.754891 4.751677
1.7 1.02550 -0.001295 -0.000511 -0.001098 -0.001227 -0.001133
1.324419 1.974661 2.788058 3.760063 4.754043
1.8 1.08598 -0.000064 -0.000313 -0.000380 -0.000550 -0.000551
1.482119 2.061705 2.819646 3.767627 4.757247
1.9 1.14610 -0.000263 -0.000282 -0.000085 -0.000199 -0.000232
1.644506 2.098222 2.903101 3.783034 4.762789
2.0 1.20662 -0.000104 -0.000083 -0.000104 -0.000105 -0.000101
2.348144 3.776461 4.763836 5.758335 6.755960

“Upper value in each pair of rows.

b . .
"Lower value in each pair of rows.
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Table 4. FWHM, Relative Height with Respect to the Peak of the ILS, “and Position in Units of 1/L%of the
First Five Maxima of the Apodizing Functions Presented in this Paper

Relative
FWHM FWHM hq hy hg hy hs
1.0 0.60364 0.128375 0.070914 0.049029 0.037473 0.030332
1.230154 2.239839 3.243821 4.246163 5.247804
1.1 0.66420 0.096291 0.061050 0.043331 0.033434 0.027178
1.206513 2.220976 3.230148 4.235539 5.239143
1.2 0.72424 0.054493 0.037163 0.026814 0.020821 0.016972
1.243239 2.235294 3.239185 4.242212 5.244445
1.3 0.78458 0.027323 0.022755 0.017081 0.013447 0.011037
1.280246 2.242023 3.242146 4.244048 5.245779
14 0.84468 0.008161 0.013794 0.011295 0.009135 0.007587
1.328441 2.231925 3.233072 4.236753 5.239763
1.5 0.90512 0.003573 0.006695 0.005802 0.004800 0.004033
1.405000 2.264633 3.251529 4.249592 5.249655
1.6 0.96542 0.002738 0.002413 0.002696 0.002407 0.002089
1.505329 2.301476 3.259629 4.252705 5.251229
1.7 1.02550 0.001252 0.000782 0.001217 0.001189 0.001071
1.615708 2.343501 3.268347 4.256090 5.252965
1.8 1.08598 0.000555 0.000212 0.000501 0.000561 0.000532
1.691538 2.419983 3.282272 4.260803 5.255272
1.9 1.14610 -0.00013 0.000102 0.000151 0.000223 0.000232
1.830878 2.539345 3.315750 4.269465 5.259122
2.0 1.20662 0.000058 0.000097 0.000106 0.000104 0.000098
3.284766 4.268922 5.260508 6.256902 7.255372

“Upper value in each pair of rows.

b . .
Lower value in each pair of rows.

The solution was considered to have converged when the
measured FWHM was within 10~* of its target value, and
the magnitude of the largest sidelobe varied by less than
1074 of the value at the previous iteration.

The initial starting point for the minimization was
taken to be the locus of the sinc function. However, for
completeness, the program was executed with random
starting points and the routine would always converge to
the same set of coefficients, within the convergence crite-
ria described above. In addition, when the empirical line
was shifted two decades below its nominal position on the
Filler diagram the functions would converge to the same
value, further validating the claim by Norton and Beer
that this empirical line is a real limit for this class of func-
tions. As a final check on the validity of these results, the
Powell method of minimization [7], which uses a conju-
gate direction set, and also does not require analytic de-
rivatives, was employed. To within the convergence limits
the Powell method returned the same coefficients.

5. RESULTS

Using the method described above we have extended the
analysis of Norton and Beer to derive the coefficients of 10
apodizing functions that correspond to FWHM of 1.1 to
2.0 in steps of 0.1. The apodizing functions are shown in
Fig. 1 and the corresponding ILS in Fig. 2, where it is
noted that the locations of the zero crossings, and hence
the independence of the spectral data points, are largely
preserved. The coefficients that describe these functions,
C;, are presented in Table 2. The derived FWHM values of

the corresponding ILS, and the magnitude and location of
the first five secondary minima and maxima, are given in
Tables 3 and 4, respectively. In order to compare the
tradeoff between FWHM and the relative magnitude of
the largest secondary lobe, the results are summarized in
Table 5. Finally, the loci of these apodizing functions are
shown in the Filler diagram of Fig. 3, with respect to the
empirical boundary given by Eq. (4).

For completeness, some other commonly used apodiza-
tion functions are listed below and shown in Fig. 3 for
comparison. These include the Gaussian function,

Table 5. FWHM of ILS Relative to the Sinc and the
Magnitude of the Largest Secondary Lobe Relative
to the Maximum, Expressed as a Percentage, for
the Extended Norton-Beer Apodizing Functions

Magnitude of Largest

FWHM Secondary Lobe
1.0 21.723%
1.1 9.631%
1.2 5.504%
1.3 2.732%
1.4 1.389%
1.5 0.674%
1.6 0.276%
1.7 0.130%
1.8 0.056%
1.9 0.028%
2.0 0.011%
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Fig. 3. (Color online) The loci of the extended apodizing func-
tions on the Filler diagram (open circles). The solid diamonds
show the loci of the original Norton-Beer apodizing functions.
For comparison the loci of other commonly used apodizing func-
tions are shown; the Bartlett and Hann functions give inferior re-
sults, while the Gaussian, Hamming and Blackman—Harris func-
tions are seen to be near optimum. The solid line is the empirical
boundary given by Eq. (4).

) 5\?
Al =|=exp-|(—=|, 0<6<L;
L L

the Hamming function [5],
o mo
Al = |=0.54+0.46 cos| — |, 0<6=<L;
L L
the Hann function [8],

o 7o
Al =]=0.5(1+cos| — ||, 0<6<L;
L L

and two common versions of Blackman—Harris functions
[5]: the three-term Blackman—Harris function,

5 7o
Al — | =0.42323 + 0.49755 cos| —
L L

276
+0.07922 cos T s 0<d6<L,
and the four-term Blackman—Harris function,

o T 276
Al = |=0.35875+0.48829 cos| — | + 0.14128 cos| —
L L L

376
+0.01168 cos - ) 0<46=<L.

Learner et al. [9] introduced a modified four-term
Blackman-Harris function given by

5 mo
A I =0.355766 + 0.487395 cos A

276 37
+0.144234 cos T +0.012605 cos T ,

D. A. Naylor and M. K. Tahic

in which the coefficients are adjusted to remove the ped-
estal at the end of the apodizing function. While this
modification leads to a decrease in the magnitude of the
highest residual sidelobe, as shown in Fig. 3, it is seen to
come at the cost of increased FWHM and lies above the
optimum boundary described by Eq. (4).

6. CONCLUSION

We have extended the work of Norton and Beer to intro-
duce 10 apodizing functions that correspond to FWHM of
the ILS ranging from 1.1 to 2.0 in steps of 0.1. When dis-
played on the Filler diagram, the new functions are found
to support the claim of the empirical boundary previously
determined. The functions are simple to implement and
compute and can be used to study the trade-off between
ringing in the ILS and spectral resolution, and have po-
tential application in diverse fields involving Fourier
analysis. While their application is primarily intended for
symmetric interferograms, they can also be applied to
asymmetric interferograms that result from not sampling
the zero path difference position after shifting the apodiz-
ing function by the appropriate amount using the Fourier
shift theorem. Their simple form and rapid computation
will be particularly advantageous in imaging Fourier
transform spectroscopy applications involving many
pixels.
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