Lethbridge Number Theory and Combinatorics Seminar

Monday — February 12, 2018 Room: B543 Time: 12:00 to 12:50 p.m.

Ha Tran University of Calgary Reduced Ideals from the Reduction Algorithm

Abstract: Reduced ideals of a number field F have inverses of small norms and they form a finite and regularly distributed set in the infrastructure of F. Therefore, they can be used to compute the regulator and the class number of a number field [5, 3, 2, 1, 4]. One usually applies the reduction algorithm (see Algorithm 10.3 in [4]) to find them. Ideals obtained from this algorithm are called 1-reduced. There exist reduced ideals that are not 1-reduced. We will show that these ideals have inverses of larger norms among reduced ones. Especially, we represent a sufficient and necessary condition for reduced ideals of real quadratic fields to be obtained from the reduction algorithm.

- Johannes Buchmann. A subexponential algorithm for the determination of class groups and regulators of algebraic number fields. In *Séminaire de Théorie des Nombres, Paris 1988–1989*, volume 91 of *Progr. Math.*, pages 27–41. Birkhäuser Boston, Boston, MA, 1990.
- [2] Johannes Buchmann and H. C. Williams. On the infrastructure of the principal ideal class of an algebraic number field of unit rank one. *Math. Comp.*, 50(182):569–579, 1988.
- [3] H. W. Lenstra, Jr. On the calculation of regulators and class numbers of quadratic fields. In *Number theory days, 1980 (Exeter, 1980)*, volume 56 of *London Math. Soc. Lecture Note Ser.*, pages 123–150. Cambridge Univ. Press, Cambridge, 1982.
- [4] René Schoof. Computing Arakelov class groups. In Algorithmic number theory: lattices, number fields, curves and cryptography, volume 44 of Math. Sci. Res. Inst. Publ., pages 447–495. Cambridge Univ. Press, Cambridge, 2008.
- [5] Daniel Shanks. The infrastructure of a real quadratic field and its applications. In Proceedings of the Number Theory Conference (Univ. Colorado, Boulder, Colo., 1972), pages 217–224. Univ. Colorado, Boulder, Colo., 1972.

EVERYONE IS WELCOME!

Visit the seminar web page at http://www.cs.uleth.ca/~nathanng/ntcoseminar/

