Lethbridge Number Theory and Combinatorics Seminar

Monday — January 21, 2019
Room: D631

Time: 12:00 to 12:50 p.m.

Amir Akbary
 University of Lethbridge
 Ambiguous Solutions of a Pell Equation

It is known that if the negative Pell equation $X^{2}-D Y^{2}=-1$ is solvable (in integers), and if (x, y) is its solution with smallest positive x and y, then all of its solutions $\left(x_{n}, y_{n}\right)$ are given by the formula

$$
x_{n}+y_{n} \sqrt{D}= \pm(x+y \sqrt{D})^{2 n+1}
$$

for $n \in \mathbb{Z}$. Furthermore, a theorem of Walker from 1967 states that if the equation $a X^{2}-b Y^{2}= \pm 1$ is solvable, and if (x, y) is its solution with smallest positive x and y, then all of its solutions $\left(x_{n}, y_{n}\right)$ are given by

$$
x_{n} \sqrt{a}+y_{n} \sqrt{b}= \pm(x \sqrt{a}+y \sqrt{b})^{2 n+1}
$$

for $n \in \mathbb{Z}$. We describe a unifying theorem that includes both of these results as special cases. The key observation is a structural theorem for the non-trivial ambiguous classes of the solutions of Pell equations $X^{2}-D Y^{2}= \pm N$. This talk is based on the work of Forrest Francis in an NSERC USRA project in summer 2015.

EVERYONE IS WELCOME!

Visit the seminar web page at http://www.cs.uleth.ca/~nathanng/ntcoseminar/

Mathematical Sciences

